FREE BOOKS

Author's List




PREV.   NEXT  
|<   281   282   283   284   285   286   287   288   289   290   291   292   293   294   295   296   297   298   299   300   301   302   303   304   305  
306   307   308   309   310   311   312   313   314   315   316   317   318   319   320   321   322   323   324   325   326   327   328   329   330   >>   >|  
The ends are removed by a saw, and the bones are steeped in a 1% brine solution for three to four days, in order to separate the fibrous matter. The bones are now heated with water, and allowed to simmer for about six hours. This removes a part of the fat and gelatinous matter; the former rises as a scum, the latter passes into solution, and the bones remain sufficiently firm to be worked up by the lathe, &c. The fat is skimmed off, and, after bleaching, reappears as a component of fine soaps, or, if unbleached, the oil is expressed and is used as an adulterant of other oils, while the stearine or solid matter goes to the candle-maker; the gelatinous water is used (after filtration) for making size for cardboard boxes; while the bones are scrubbed, dried, and then transferred to the bone-worker. The glue-worker first removes the fat, which is supplied to the soap and candle trades; the bones are now treated for glue (q.v.); and the residue is worked up for manures, &c. These residues are ground to a fine or coarse meal, and supplied either directly as a fertilizer or treated with sulphuric acid to form the more soluble superphosphates, which are more readily assimilated by growing plants. In some places, especially South America, the residues are burned in a retort to a white ash, the "bone-ash" of commerce, which contains some 70-80% of tricalcium phosphate, and is much used as a manure, and in the manufacture of high-grade superphosphates. In the gelatin industry (see GELATIN) the mineral matter has to be recovered from its solution in hydrochloric acid. To effect this, the liquors are freed from suspended matter by filtration, and then run into vats where they are mixed with milk of lime, or some similar neutralizer. The slightly soluble bicalcium phosphate, CaHPO4, is first precipitated, which, with more lime, gives ordinary tricalcium phosphate, Ca3(PO4)2. The contents of the vats are filter-pressed, and the cakes dried on plates supported on racks in heated chambers. This product is a very valuable manure, and is also used in the manufacture of phosphorus. Instead of extracting all the gelatinous matter from degreased bones, the practice of extracting about one half and carbonizing the residue is frequently adopted. The bones are heated in horizontal cast-iron retorts, holding about 5 cwt., and the operation occupies about twelve to thirte
PREV.   NEXT  
|<   281   282   283   284   285   286   287   288   289   290   291   292   293   294   295   296   297   298   299   300   301   302   303   304   305  
306   307   308   309   310   311   312   313   314   315   316   317   318   319   320   321   322   323   324   325   326   327   328   329   330   >>   >|  



Top keywords:
matter
 

heated

 
gelatinous
 

solution

 
phosphate
 

residue

 

worked

 
tricalcium
 

residues

 

filtration


worker
 

candle

 

supplied

 

treated

 

soluble

 
manufacture
 

superphosphates

 
removes
 
manure
 

extracting


gelatin

 

mineral

 

GELATIN

 

industry

 

suspended

 

effect

 

recovered

 

hydrochloric

 

liquors

 

pressed


carbonizing
 

frequently

 

practice

 
degreased
 

phosphorus

 

Instead

 

adopted

 

horizontal

 
operation
 
occupies

twelve

 

thirte

 
retorts
 

holding

 

valuable

 

precipitated

 

ordinary

 

CaHPO4

 

bicalcium

 

similar