FREE BOOKS

Author's List




PREV.   NEXT  
|<   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38   39   40   41  
42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   >>   >|  
m._, 1905, 47, p. 446). Its critical temperature is 146 deg. C. Liquid and solid chlorine are both yellow in colour. The gas must be collected either by downward displacement, since it is soluble in water and also attacks mercury; or over a saturated salt solution, in which it is only slightly soluble. At ordinary temperatures it unites directly with many other elements; thus with hydrogen, combination takes place in direct sunlight with explosive violence; arsenic, antimony, thin copper foil and phosphorus take fire in an atmosphere of chlorine, forming the corresponding chlorides. Many compounds containing hydrogen are readily decomposed by the gas; for example, a piece of paper dipped in turpentine inflames in an atmosphere of chlorine, producing hydrochloric acid and a copious deposit of soot; a lighted taper burns in chlorine with a dull smoky flame. The solution of chlorine in water, when freshly prepared, possesses a yellow colour, but on keeping becomes colourless, on account of its decomposition into hydrochloric acid and oxygen. It is on this property that its bleaching and disinfecting power depends (see BLEACHING). Water saturated with chlorine at 0 deg. C. deposits crystals of a hydrate Cl2.8H2O, which is readily decomposed at a higher temperature into its constituents. Chlorine hydrate has an historical importance, as by sealing it up in a bent tube, and heating the end containing the hydrate, whilst the other limb of the tube was enclosed in a freezing mixture, M. Faraday was first able to obtain liquid chlorine. Chlorine is used commercially for the extraction of gold (q.v.) and for the manufacture of "bleaching powder" and of chlorates. It also finds an extensive use in organic chemistry as a substituting and oxidizing agent, as well as for the preparation of addition compounds. For purposes of substitution, the free element as a rule only works slowly on saturated compounds, but the reaction may be accelerated by the action of sunlight or on warming, or by using a "carrier." In these latter cases the reaction may proceed in different directions; thus, with the aromatic hydrocarbons, chlorine in the cold or in the presence of a carrier substitutes in the benzene nucleus, but in the presence of sunlight or on warming, substitution takes place in the side chain. Iodine, antimony trichloride, molybdenum pentachloride, ferric chloride, ferric oxide, antimony, tin, stannic oxide and
PREV.   NEXT  
|<   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38   39   40   41  
42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   >>   >|  



Top keywords:

chlorine

 

antimony

 

hydrate

 
compounds
 
sunlight
 

saturated

 

warming

 
carrier
 

hydrochloric

 

solution


reaction

 

atmosphere

 

readily

 
decomposed
 

substitution

 

hydrogen

 

yellow

 
colour
 

Chlorine

 
ferric

temperature

 
bleaching
 

soluble

 

presence

 
enclosed
 

whilst

 

historical

 

importance

 

extraction

 

chlorates


powder

 

manufacture

 

commercially

 

heating

 
mixture
 

sealing

 
obtain
 
freezing
 
Faraday
 

liquid


aromatic

 

hydrocarbons

 

substitutes

 
directions
 

proceed

 

benzene

 

nucleus

 
pentachloride
 

chloride

 
stannic