FREE BOOKS

Author's List




PREV.   NEXT  
|<   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48  
49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   >>   >|  
uminium (about 20%) as an essential constituent. The magnesia (up to 36%) is often in part replaced by ferrous oxide (up to 30%), and the alumina to a lesser extent by ferric oxide; alumina may also be partly replaced by chromic oxide, as in the rose-red varieties kaemmererite and kotschubeite. The composition of both clinochlore and penninite is approximately expressed by the formula H8(Mg,Fe)5Al2Si3O18, and the formulae of prochlorite and corundophilite are H40(Mg,Fe)23Al14Si13O90 and H20(Mg,Fe)20Al8Si6O45 respectively. The variation in composition of these orthochlorites is explained by G. Tschermak by assuming them to be isomorphous mixtures of H4Mg3Si2O9 (the serpentine molecule) and H4Mg3Al2SiO9 (which is approximately the composition of the chlorite amesite). The leptochlorites are still more complex, and the intermixture of other fundamental molecules has to be assumed; the species recognized by Dana are daphnite, cronstedtite, thuringite, stilpnomelane, strigovite, diabantite, aphrosiderite, delessite and rumpfite. The chlorites usually occur as alteration products of other minerals, such as pyroxene, amphibole, biotite, garnet, &c., often occurring as pseudomorphs after these, or as earthy material filling cavities in igneous rocks composed of these minerals. Many altered igneous rocks owe their green colour to the presence of secondary chlorite. Chlorite is also an important constituent of many schistose rocks and phyllites, and of chlorite-schist it is the only essential constituent. Well-crystallized specimens of the species clinochlore are found with crystals of garnet in cavities in chlorite-schist at Achmatovsk near Zlatoust, in the Urals, and at the Ala valley near Turin, Piedmont; also as large plates at West Chester in Pennsylvania and at other American localities. Crystals of penninite are found in serpentine at Zermatt in Switzerland and in the green schists of the Zillerthal in Tirol. Closely allied to the chlorites is another group of micaceous minerals known as the vermiculites, which have resulted by the alteration of the micas, particularly biotite and phlogopite. The name is from the Latin _vermiculor_, "to breed worms," because when heated before the blowpipe these minerals exfoliate into long worm-like threads. They have the same chemical constituents as the chlorites, but the composition is variable and indefinite, varying with that of the original mineral and the extent of its alterati
PREV.   NEXT  
|<   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48  
49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   >>   >|  



Top keywords:

composition

 

chlorite

 

minerals

 
constituent
 
chlorites
 

penninite

 

clinochlore

 
essential
 

approximately

 

alteration


biotite

 

species

 

garnet

 
igneous
 

alumina

 

replaced

 

cavities

 
extent
 

serpentine

 
schist

American

 
localities
 

valley

 

plates

 
Piedmont
 

Chester

 

Pennsylvania

 

crystallized

 

schistose

 

phyllites


important

 

Chlorite

 

colour

 

presence

 
secondary
 

crystals

 
Achmatovsk
 
specimens
 
alterati
 

Crystals


Zlatoust

 

allied

 

exfoliate

 
blowpipe
 

heated

 

threads

 

variable

 
indefinite
 

varying

 
original