FREE BOOKS

Author's List




PREV.   NEXT  
|<   22   23   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46  
47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   >>   >|  
Sodium hypochlorite can be prepared by the electrolysis of brine solution in the presence of carbon electrodes, having no diaphragm in the electrolytic cell, and mixing the anode and cathode products by agitating the liquid. The temperature should be kept at about 15 deg. C., and the concentration of the hypochlorite produced must not be allowed to become too great, in order to prevent reduction taking place at the cathode. Chlorous acid is not known in the pure condition; but its sodium salt is prepared by the action of sodium peroxide on a solution of chlorine peroxide: 2ClO2 + Na2O2 = 2NaClO2 + O2. The silver and lead salts are unstable, being decomposed with explosive violence at 100 deg. C. On adding a caustic alkali solution to one of chlorine peroxide, a mixture of a chlorite and a chlorate is obtained. Chloric acid was discovered in 1786 by C.L. Berthollet, and is best prepared by decomposing barium chlorate with the calculated amount of dilute sulphuric acid. The aqueous solution can be concentrated _in vacuo_ over sulphuric acid until it contains 40% of chloric acid. Further concentration leads to decomposition, with evolution of oxygen and formation of perchloric acid. The concentrated solution is a powerful oxidizing agent; organic matter being oxidized so rapidly that it frequently inflames. Hydrochloric acid, sulphuretted hydrogen and sulphurous acid are rapidly oxidized by chloric acid. J.S. Stas determined its composition by the analysis of pure silver chlorate. The salts of this acid are known as chlorates (q.v.). Perchloric acid is best prepared by distilling potassium perchlorate with concentrated sulphuric acid. According to Sir H. Roscoe, pure perchloric acid distils over at first, but if the distillation be continued a white crystalline mass of hydrated perchloric acid, HClO4.H2O, passes over; this is due to the decomposition of some of the acid into water and lower oxides of chlorine, the water produced then combining with the pure acid to produce the hydrated form. This solid, on redistillation, gives the pure acid, which is a liquid boiling at 39 deg. C. (under a pressure of 56 mm.) and of specific gravity 1.764 (22/4) deg.. The crystalline hydrate melts at 50 deg. C. The pure acid decomposes slowly on standing, but is stable in dilute aqueous solution. It is a very powerful oxidizing agent; wood and paper in contact
PREV.   NEXT  
|<   22   23   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46  
47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   >>   >|  



Top keywords:

solution

 

prepared

 
chlorate
 

peroxide

 
chlorine
 

sulphuric

 

concentrated

 

perchloric

 

sodium

 

oxidized


rapidly

 
crystalline
 

hydrated

 

powerful

 
aqueous
 
chloric
 
decomposition
 

silver

 

oxidizing

 
dilute

concentration
 

produced

 

hypochlorite

 

cathode

 
liquid
 
distils
 

contact

 

Roscoe

 

perchlorate

 

According


distillation
 

continued

 

potassium

 

distilling

 

sulphurous

 

hydrogen

 

Hydrochloric

 

sulphuretted

 

determined

 
composition

Perchloric

 
chlorates
 
analysis
 

electrolysis

 

passes

 
gravity
 

specific

 
pressure
 

decomposes

 
slowly