FREE BOOKS

Author's List




PREV.   NEXT  
|<   11   12   13   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35  
36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   >>   >|  
etted, I think you will see, without any explanation from me, that they should be pressed together, and this is made evident by experiment. Two other beads which have been dipped in paraffin wax so that they are neither of them wetted by water float up to one another again when separated as though they attracted each other just as the clean glass beads did. [Illustration: Fig. 11.] If you again consider these two cases, you will see that a plate that is wetted tends to move towards the higher level of the liquid, whereas one that is not wetted tends to move towards the lower level, that is if the level of the liquid on the two sides is made different by capillary action. Now suppose one plate wetted and the other not wetted, then, as the diagram imperfectly shows, the level of the liquid between the plates _where it meets_ the non-wetted plate is higher than that outside, while where it meets the wetted plate it is lower than that outside; so each plate tends to go away from the other, as you can see now that I have one paraffined and one clean ball floating in the same water. They appear to repel one another. You may also notice that the surface of the liquid near a wetted plate is curved, with the hollow of the curve upwards, while near a non-wetted plate the reverse is the case. That this curvature of the surface is of the first importance I can show you by a very simple experiment, which you can repeat at home as easily as the last that I have shown. I have a clean glass bead floating in water in a clean glass vessel, which is not quite full. The bead always goes to the side of the vessel. It is impossible to make it remain in the middle, it always gets to one side or the other directly. I shall now gradually add water until the level of the water is rather higher than that of the edge of the vessel. The surface is then rounded near the vessel, while it is hollow near the bead, and now the bead sails away towards the centre, and can by no possibility be made to stop near either side. With a paraffined bead the reverse is the case, as you would expect. Instead of a paraffined bead you may use a common needle, which you will find will float on water in a tumbler, if placed upon it very gently. If the tumbler is not quite full the needle will always go away from the edge, but if rather over-filled it will work up to one side, and then possibly roll over the edge; any bubbles, on the other hand, which were adhering
PREV.   NEXT  
|<   11   12   13   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35  
36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   >>   >|  



Top keywords:

wetted

 

vessel

 
liquid
 

higher

 

surface

 

paraffined

 

tumbler

 

needle

 

hollow

 

floating


reverse
 
experiment
 
middle
 

remain

 

directly

 

explanation

 
gradually
 

impossible

 

adhering

 

evident


pressed
 

rounded

 

common

 

Instead

 

expect

 

filled

 

gently

 

possibility

 

centre

 

bubbles


easily
 

possibly

 

imperfectly

 

diagram

 

suppose

 

plates

 

separated

 

attracted

 

action

 

Illustration


capillary
 

upwards

 

curvature

 

repeat

 

simple

 
importance
 

curved

 

dipped

 

paraffin

 

notice