FREE BOOKS

Author's List




PREV.   NEXT  
|<   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43  
44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   >>   >|  
er by a third pipe in which there is a third tap. I will first blow one bubble and shut it off with the tap 1 (Fig. 22), and then the other, and shut it off with the tap 2. They are now nearly equal in size, but the air cannot yet pass from one to the other because the tap 3 is turned off. Now if the pressure in the largest one is greatest it will blow air into the other when I open this tap, until they are equal in size; if, on the other hand, the pressure in the small one is greatest, it will blow air into the large one, and will itself get smaller until it has quite disappeared. We will now try the experiment. You see immediately that I open the tap 3 the small bubble shuts up and blows out the large one, thus showing that there is a greater pressure in a small than in a large bubble. The directions in which the air and the bubble move is indicated in the figure by arrows. I want you particularly to notice and remember this, because this is an experiment on which a great deal depends. To impress this upon your memory I shall show the same thing in another way. There is in front of the lantern a little tube shaped like a U half filled with water. One end of the U is joined to a pipe on which a bubble can be blown (Fig. 23). You will now be able to see how the pressure changes as the bubble increases in size, because the water will be displaced more when the pressure is more, and less when it is less. Now that there is a very small bubble, the pressure as measured by the water is about one quarter of an inch on the scale. The bubble is growing and the pressure indicated by the water in the gauge is falling, until, when the bubble is double its former size, the pressure is only half what it was; and this is always true, the smaller the bubble the greater the pressure. As the film is always stretched with the same force, whatever size the bubble is, it is clear that the pressure inside can only depend upon the curvature of a bubble. In the case of lines, our ordinary language tells us, that the larger a circle is the less is its curvature; a piece of a small circle is said to be a quick or a sharp curve, while a piece of a great circle is only slightly curved; and if you take a piece of a very large circle indeed, then you cannot tell it from a straight line, and you say it is not curved at all. With a part of the surface of a ball it is just the same--the larger the ball the less it is curved; and if the ball is very larg
PREV.   NEXT  
|<   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43  
44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   >>   >|  



Top keywords:

bubble

 

pressure

 
circle
 

curved

 

experiment

 

smaller

 

curvature

 

larger


greater

 

greatest

 
stretched
 
displaced
 
falling
 

growing

 

double

 

measured


increases
 

quarter

 

slightly

 

straight

 
surface
 

depend

 

inside

 

ordinary


language

 

immediately

 

disappeared

 

directions

 

showing

 

largest

 
turned
 

figure


arrows

 

shaped

 

lantern

 

filled

 

joined

 

depends

 

remember

 

notice


impress
 

memory