FREE BOOKS

Author's List




PREV.   NEXT  
|<   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67  
68   69   70   71   72   73   >>  
a flame five or six inches long (Fig. 53). You might also have noticed that when the bubble was removed, the vapour inside it began to pass out again and fell away in a heavy stream, but this you could only see by looking at the shadow upon the screen. [Illustration: Fig. 53] You may have noticed when I made the drops of oil in the mixture of alcohol and water, that when they were brought together they did not at once unite; they pressed against one another and pushed each other away if allowed, just as the water-drops did in the fountain of which I showed you a photograph. You also may have noticed that the drops of water in the paraffin mixture bounced against one another, or if filled with the paraffin, formed bubbles in which often other small drops, both of water and paraffin, remained floating. In all these cases there was a thin film of something between the drops which they were unable to squeeze out, namely, water, paraffin, or air, as the case might be. Will two soap-bubbles also when knocked together be unable to squeeze out the air between them? This you can try at home just as well as I can here, but I will perform the experiment at once. I have blown a pair of bubbles, and now when I hit them together they remain distinct and separate (Fig. 54). [Illustration: Fig. 54.] I shall next place a bubble on a ring, which it is just too large to get through. In my hand I hold a ring, on which I have a flat film, made by placing a bubble upon it and breaking it on one side. If I gently press the bubble with the flat film, I can push it through the ring to the other side (Fig. 55), and yet the two have not really touched one another at all. The bubble can be pushed backwards and forwards in this way many times. [Illustration: Fig. 55.] I have now blown a bubble and hung it below a ring. To this bubble I can hang another ring of thin wire, which pulls it a little out of shape. Since the pressure inside is less than that corresponding to a complete sphere, and since it is greater than that outside, and this we can tell by looking at the caps, the curve is part of one of those represented by the dotted lines in C or E, Fig. 31. However, without considering the curve any more, I shall push the end of the pipe inside, and blow another bubble there, and let it go. It falls gently until it rests upon the outer bubble; not at the bottom, because the heavy ring keeps that part out of reach, but along a circul
PREV.   NEXT  
|<   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67  
68   69   70   71   72   73   >>  



Top keywords:

bubble

 

paraffin

 
Illustration
 

inside

 

noticed

 

bubbles

 

pushed

 

unable

 

mixture


gently

 
squeeze
 
pressure
 
backwards
 

touched

 

forwards

 

circul

 
bottom
 

greater


complete

 

sphere

 
However
 

represented

 

dotted

 

pressed

 

allowed

 

brought

 

alcohol


fountain

 

showed

 

formed

 
filled
 

photograph

 

bounced

 

screen

 

shadow

 

removed


vapour

 

inches

 

stream

 

remained

 
distinct
 

separate

 

remain

 

experiment

 

placing


perform
 

floating

 

knocked

 

breaking