FREE BOOKS

Author's List




PREV.   NEXT  
|<   27   28   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51  
52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   >>  
on: Fig. 32.] [Illustration: Fig. 33.] We have found that the pressure in a short cylinder gets less if it begins to develop a waist, and greater if it begins to bulge. Let us therefore try and balance one with a bulge against another with a waist. Immediately that I open the tap and let the air pass, the one with a bulge blows air round to the one with a waist and they both become straight. In Fig. 32 the direction of the movement of the air and of the sides of the bubble is indicated by arrows. Let us next try the same experiment with a pair of rather longer cylinders, say about twice as long as they are wide. They are now ready, one with a bulge and one with a waist. Directly I open the tap, and let the air pass from one to the other, the one with a waist blows out the other still more (Fig. 33), until at last it has shut itself up. It therefore behaves exactly in the opposite way that the short cylinder did. If you try pairs of cylinders of different lengths you will find that the change occurs when they are just over one and a half times as long as they are wide. Now if you imagine one of these tubes joined on to the end of the other, you will see that a cylinder more than about three times as long as it is wide cannot last more than a moment; because if one end were to contract ever so little the pressure there would increase, and the narrow end would blow air into the wider end (Fig. 34), until the sides of the narrow end met one another. The exact length of the longest cylinder that is stable, is a little more than three diameters. The cylinder just becomes unstable when its length is equal to its circumference, and this is 3-1/7 diameters almost exactly. [Illustration: Fig. 34.] I will gradually separate these rings, keeping up a supply of air, and you will see that when the tube gets nearly three times as long as it is wide it is getting very difficult to manage, and then suddenly it grows a waist nearer one end than the other, and breaks off forming a pair of separate and unequal bubbles. If now you have a cylinder of liquid of great length suddenly formed and left to itself, it clearly cannot retain that form. It must break up into a series of drops. Unfortunately the changes go on so quickly in a falling stream of water that no one by merely looking at it could follow the movements of the separate drops, but I hope to be able to show to you in two or three ways exactly what is happening. You may r
PREV.   NEXT  
|<   27   28   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51  
52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   >>  



Top keywords:

cylinder

 

separate

 
length
 

pressure

 

narrow

 

diameters

 

suddenly

 

Illustration

 

begins

 

cylinders


supply
 
manage
 
keeping
 

difficult

 

happening

 

circumference

 
gradually
 

retain

 

falling

 

quickly


Unfortunately
 

stream

 

series

 

breaks

 

nearer

 

movements

 

forming

 

unequal

 

formed

 

liquid


follow
 

bubbles

 

occurs

 

experiment

 

longer

 

arrows

 

Directly

 

bubble

 

movement

 

greater


balance
 

develop

 

Immediately

 

direction

 

straight

 
contract
 

moment

 

increase

 

stable

 

longest