FREE BOOKS

Author's List




PREV.   NEXT  
|<   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54  
55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   >>  
follow them. (I should explain that for a reason which will appear later, I made a loud note by whistling into a key at the time that this photograph was taken.) [Illustration: Fig. 39.] [Illustration: Fig. 40.] Lord Rayleigh has shown that in a stream of water one twenty-fifth of an inch in diameter, necks impressed upon the stream, even though imperceptible, develop a thousandfold in depth every fortieth of a second, and thus it is not difficult to understand that in such a stream the water is already broken through before it has fallen many inches. He has also shown that free water drops vibrate at a rate which may be found as follows. A drop two inches in diameter makes one complete vibration in one second. If the diameter is reduced to one quarter of its amount, the time of vibration will be reduced to one-eighth, or if the diameter is reduced to one-hundredth, the time will be reduced to one-thousandth, and so on. The same relation between the diameter and the time of breaking up applies also to cylinders. We can at once see how fast a bead of water the size of one of those in the spider's web would vibrate if pulled out of shape, and let go suddenly. If we take the diameter as being one eight-hundredth of an inch, and it is really even finer, then the bead would have a diameter of one sixteen-hundredth of a two-inch bead, which makes one vibration in one second. It will therefore vibrate sixty-four thousand times as fast, or sixty-four thousand times a second. Water-drops the size of the little beads, with a diameter of rather less than one three-thousandth of an inch, would vibrate half a million times a second, under the sole influence of the feebly elastic skin of water! We thus see how powerful is the influence of the feebly elastic water-skin on drops of water that are sufficiently small. I shall now cause a small fountain to play, and shall allow the water as it falls to patter upon a sheet of paper. You can see both the fountain itself and its shadow upon the screen. You will notice that the water comes out of the nozzle as a smooth cylinder, that it presently begins to glitter, and that the separate drops scatter over a great space (Fig. 41). Now why should the drops scatter? All the water comes out of the jet at the same rate and starts in the same direction, and yet after a short way the separate drops by no means follow the same paths. Now instead of explaining this, and then showing experiment
PREV.   NEXT  
|<   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54  
55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   >>  



Top keywords:

diameter

 

reduced

 
vibrate
 

hundredth

 

vibration

 

stream

 

follow

 

scatter

 

thousandth

 

separate


thousand
 
influence
 
elastic
 

inches

 

feebly

 

fountain

 
Illustration
 

sufficiently

 

patter

 

powerful


Rayleigh
 

whistling

 

million

 

direction

 

starts

 

explaining

 

showing

 

experiment

 

nozzle

 

smooth


notice
 

screen

 

shadow

 

cylinder

 

presently

 

photograph

 

begins

 

glitter

 

quarter

 

amount


eighth
 

reason

 

complete

 

fortieth

 

relation

 
thousandfold
 

difficult

 

explain

 

broken

 

understand