FREE BOOKS

Author's List




PREV.   NEXT  
|<   10   11   12   13   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34  
35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   >>   >|  
to put a narrow tube into this liquid to show that the level is lower in the tube than in the surrounding vessel, but the same result may be obtained by having a wide and a narrow tube joined together. Then, as you see upon the screen, the quicksilver is lower in the narrow than in the wide tube, whereas in a similar apparatus the reverse is the case with water (Fig. 10). [Illustration: Fig. 10.] I want you now to consider what is happening when two flat plates partly immersed in water are held close together. We have seen that the water rises between them. Those parts of these two plates, which have air between them and also air outside them (indicated by the letter _a_ in Fig. 11), are each of them pressed equally in opposite directions by the pressure of the air, and so these parts do not tend to approach or to recede from one another. These parts again which have water on each side of each of them (as indicated by the letter _c_) are equally pressed in opposite directions by the pressure of the water, and so these parts do not tend to approach or to recede from one another. But those parts of the plates (_b_) which have water between them and air outside would, you might think, be pushed apart by the water between them with a greater force than that which could be exerted by the air outside, and so you might be led to expect that on this account a pair of plates if free to move would separate at once. But such an idea though very natural is wrong, and for this reason. The water that is raised between the plates being above the general level must be under a less pressure, because, as every one knows, as you go down in water the pressure increases, and so as you go up the pressure must get less. The water then that is raised between the plates is under a less pressure than the air outside, and so on the whole the plates are pushed together. You can easily see that this is the case. I have two very light hollow glass beads such as are used to decorate a Christmas tree. These will float in water if one end is stopped with sealing-wax. These are both wetted by water, and so the water between them is slightly raised, for they act in the same way as the two plates, but not so powerfully. However, you will have no difficulty in seeing that the moment I leave them alone they rush together with considerable force. Now if you refer to the second figure in the diagram, which represents two plates which are neither of them w
PREV.   NEXT  
|<   10   11   12   13   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34  
35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   >>   >|  



Top keywords:

plates

 

pressure

 
narrow
 

raised

 

pressed

 

approach

 

equally

 

opposite

 

directions

 

pushed


recede
 
letter
 
considerable
 

increases

 

decorate

 

represents

 
reason
 

diagram

 

Christmas

 

figure


general
 

moment

 

wetted

 

slightly

 

hollow

 

sealing

 

stopped

 

easily

 

powerfully

 

However


difficulty
 

greater

 

happening

 

vessel

 

partly

 

immersed

 

surrounding

 

Illustration

 

obtained

 

joined


screen
 

quicksilver

 

reverse

 

result

 

apparatus

 
similar
 

account

 

expect

 

exerted

 

separate