FREE BOOKS

Author's List




PREV.   NEXT  
|<   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44  
45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   >>   >|  
e indeed, say 8000 miles across, you cannot tell a small piece of it from a true plane. Level water is part of such a surface, and you know that still water in a basin appears perfectly flat, though in a very large lake or the sea you can see that it is curved. We have seen that in large bubbles the pressure is little and the curvature is little, while in small bubbles the pressure is great and the curvature is great. The pressure and the curvature rise and fall together. We have now learnt the lesson which the experiment of the two bubbles, one blown out by the other, teaches us. [Illustration: Fig. 23.] [Illustration: Fig. 24.] A ball or sphere is not the only form which you can give to a soap-bubble. If you take a bubble between two rings, you can pull it out until at last it has the shape of a round straight tube or cylinder as it is called. We have spoken of the curvature of a ball or sphere; now what is the curvature of a cylinder? Looked at sideways, the edge of the wooden cylinder upon the table appears straight, _i. e._ not curved at all; but looked at from above it appears round, and is seen to have a definite curvature (Fig. 24). What then is the curvature of the surface of a cylinder? We have seen that the pressure in a bubble depends upon the curvature when they are spheres, and this is true whatever shape they have. If, then, we find what sized sphere will produce the same pressure upon the air inside that a cylinder does, then we shall know that the curvature of the cylinder is the same as that of the sphere which balances it. Now at each end of a short tube I shall blow an ordinary bubble, but I shall pull the lower bubble by means of another tube into the cylindrical form, and finally blow in more or less air until the sides of the cylinder are perfectly straight. That is now done (Fig. 25), and the pressure in the two bubbles must be exactly the same, as there is a free passage of air between the two. On measuring them you see that the sphere is exactly double the cylinder in diameter. But this sphere has only half the curvature that a sphere half its diameter would have. Therefore the cylinder, which we know has the same curvature that the large sphere has, because the two balance, has only half the curvature of a sphere of its own diameter, and the pressure in it is only half that in a sphere of its own diameter. [Illustration: Fig. 25.] I must now make one more step in explaining this que
PREV.   NEXT  
|<   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44  
45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   >>   >|  



Top keywords:

curvature

 

sphere

 
cylinder
 

pressure

 

bubble

 

diameter

 

bubbles


straight

 

appears

 

Illustration

 
perfectly
 
curved
 
surface
 

cylindrical


finally

 

balances

 
inside
 

ordinary

 

Therefore

 

balance

 
teaches

explaining

 

passage

 

double

 

measuring

 

produce

 

Looked

 

spoken


called

 

experiment

 
lesson
 

sideways

 

spheres

 

depends

 

wooden


definite

 

looked

 

learnt