FREE BOOKS

Author's List




PREV.   NEXT  
|<   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66  
67   68   69   70   71   72   73   >>  
ble position of rest (Fig. 51). The air inside a bubble is generally under pressure, which is produced by its elasticity and curvature. If the bubble would let the air pass through it from one side to the other of course it would soon shut up, as it did when a ring was hung upon one, and the film within the ring was broken. But there are no holes in a bubble, and so you would expect that a gas like air could not pass through to the other side. Nevertheless it is a fact that gases can slowly get through to the other side, and in the case of certain vapours the process is far more rapid than any one would think possible. [Illustration: Fig. 51.] [Illustration: Fig. 52.] Ether produces a vapour which is very heavy, and which also burns very easily. This vapour can get to the other side of a bubble almost at once. I shall pour a little ether upon blotting-paper in this bell jar, and fill the jar with its heavy vapour. You can see that the jar is filled with something, not by looking at it, for it appears empty, but by looking at its shadow on the screen. Now I tilt it gently to one side, and you see something pouring out of it, which is the vapour of ether. It is easy to show that this is heavy; it is only necessary to drop into the jar a bubble, and so soon as the bubble meets the heavy vapour it stops falling and remains floating upon the surface as a cork does upon water (Fig. 52). Now let me test the bubble and see whether any of the vapour has passed to the inside. I pick it up out of the jar with a wire ring and carry it to a light, and at once there is a burst of flame. But this is not sufficient to show that the ether vapour has passed to the inside, because it might have condensed in sufficient quantity upon the bubble to make it inflammable. You remember that when I poured some of this vapour upon water in the first lecture, sufficient condensed to so weaken the water-skin that the frame of wire could get through to the other side. However, I can see whether this is the true explanation or not by blowing a bubble on a wide pipe, and holding it in the vapour for a moment. Now on removing it you notice that the bubble hangs like a heavy drop; it has lost the perfect roundness that it had at first, and this looks as if the vapour had found its way in, but this is made certain by bringing a light to the mouth of the tube, when the vapour, forced out by the elasticity of the bubble, catches fire and burns with
PREV.   NEXT  
|<   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66  
67   68   69   70   71   72   73   >>  



Top keywords:

bubble

 

vapour

 
sufficient
 

inside

 

condensed

 

elasticity

 

Illustration

 

passed

 

falling

 

remains


surface
 
floating
 
explanation
 

perfect

 

roundness

 

moment

 
removing
 

notice

 

forced

 

catches


bringing
 

holding

 

poured

 

lecture

 

remember

 

inflammable

 

quantity

 

weaken

 

blowing

 

However


expect
 

broken

 

Nevertheless

 

vapours

 

process

 

slowly

 

generally

 

position

 

pressure

 

produced


curvature
 

shadow

 

appears

 

filled

 

screen

 
gently
 

pouring

 

blotting

 

produces

 

easily