FREE BOOKS

Author's List




PREV.   NEXT  
|<   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45  
46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   >>   >|  
stion of curvature. Now that the cylinder and sphere are balanced I shall blow in more air, making the sphere larger; what will happen to the cylinder? The cylinder is, as you see, very short; will it become blown out too, or what will happen? Now that I am blowing in air you see the sphere enlarging, thus relieving the pressure; the cylinder develops a waist, it is no longer a cylinder, the sides are curved inwards. As I go on blowing and enlarging the sphere, they go on falling inwards, but not indefinitely. If I were to blow the upper bubble till it was of an enormous size the pressure would become extremely small. Let us make the pressure nothing at all at once by simply breaking the upper bubble, thus allowing the air a free passage from the inside to the outside of what was the cylinder. Let me repeat this experiment on a larger scale. I have two large glass rings, between which I can draw out a film of the same kind. Not only is the outline of the soap-film curved inwards, but it is exactly the same as the smaller one in shape (Fig. 26). As there is now no pressure there ought to be no curvature, if what I have said is correct. But look at the soap-film. Who would venture to say that that was not curved? and yet we had satisfied ourselves that the pressure and the curvature rose and fell together. We now seem to have come to an absurd conclusion. Because the pressure is reduced to nothing we say the surface must have no curvature, and yet a glance is sufficient to show that the film is so far curved as to have a most elegant waist. Now look at the plaster model on the table, which is a model of a mathematical figure which also has a waist. [Illustration: Fig. 26.] Let us therefore examine this cast more in detail. I have a disc of card which has exactly the same diameter as the waist of the cast. I now hold this edgeways against the waist (Fig. 27), and though you can see that it does not fit the whole curve, it fits the part close to the waist perfectly. This then shows that this part of the cast would appear curved inwards if you looked at it sideways, to the same extent that it would appear curved outwards if you could see it from above. So considering the waist only, it is curved both towards the inside and also away from the inside according to the way you look at it, and to the same extent. The curvature inwards would make the pressure inside less, and the curvature outwards would make it more, and as th
PREV.   NEXT  
|<   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45  
46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   >>   >|  



Top keywords:

curved

 

pressure

 
cylinder
 

curvature

 

inwards

 

sphere

 

inside

 

larger

 

happen

 

extent


enlarging
 
blowing
 
outwards
 

bubble

 

mathematical

 

surface

 
figure
 

absurd

 

plaster

 

reduced


Because
 

sufficient

 

elegant

 

glance

 

conclusion

 

sideways

 

looked

 

perfectly

 

diameter

 

detail


examine
 

edgeways

 

Illustration

 

enormous

 

indefinitely

 

extremely

 

breaking

 

allowing

 

simply

 

falling


making
 

balanced

 

longer

 

develops

 

relieving

 
passage
 

correct

 

satisfied

 

venture

 

smaller