FREE BOOKS

Author's List




PREV.   NEXT  
|<   23   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47  
48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   >>   >|  
dually reduced the pressure, namely-- 1. Outside the sphere. 2. The sphere. 3. Between the sphere and the cylinder. 4. The cylinder. 5. Between the cylinder and the catenoid. 6. The catenoid. 7. Inside the catenoid. [Illustration: Fig. 29.] Now I am not going to say much more about all these curves, but I must refer to the very curious properties that they possess. In the first place, they must all of them have the same curvature in every part as the portion of the sphere which forms the cap; in the second place, they must all be the curves of the least possible surface which can enclose the air and join the rings as well. And finally, since they pass insensibly from one to the other as the pressure gradually changes, though they are distinct curves there must be some curious and intimate relation between them. This though it is a little difficult, I shall explain. If I were to say that these curves are the roulettes of the conic sections I suppose I should alarm you, and at the same time explain nothing, so I shall not put it in that way; but instead, I shall show you a simple experiment which will throw some light upon the subject, which you can try for yourselves at home. [Illustration: Fig. 30.] I have here a common bedroom candlestick with a flat round base. Hold the candlestick exactly upright near to a white wall, then you will see the shadow of the base on the wall below, and the outline of the shadow is a symmetrical curve, called a hyperbola. Gradually tilt the candle away from the wall, you will then notice the sides of the shadow gradually branch away less and less, and when you have so far tilted the candle away from the wall that the flame is exactly above the edge of the base,--and you will know when this is the case, because then the falling grease will just fall on the edge of the candlestick and splash on to the carpet,--I have it so now,--the sides of the shadow near the floor will be almost parallel (Fig. 30), and the shape of the shadow will have become a curve, known as a parabola; and now when the candlestick is still more tilted, so that the grease misses the base altogether and falls in a gentle stream upon the carpet, you will see that the sides of the shadow have curled round and met on the wall, and you now have a curve like an oval, except that the two ends are alike, and this is called an ellipse. If you go on tilting the candlest
PREV.   NEXT  
|<   23   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47  
48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   >>   >|  



Top keywords:

shadow

 

candlestick

 
curves
 

sphere

 

cylinder

 

catenoid

 

explain

 

carpet

 

called

 

gradually


tilted
 
candle
 
grease
 

Illustration

 

Between

 

pressure

 
curious
 

Gradually

 

symmetrical

 

outline


bedroom
 

upright

 

common

 

hyperbola

 

curled

 

stream

 

gentle

 

misses

 

altogether

 

tilting


candlest
 

ellipse

 

parabola

 

falling

 

branch

 

parallel

 

splash

 

notice

 

curvature

 

properties


possess
 

portion

 

enclose

 

surface

 

Outside

 
dually
 

reduced

 

Inside

 

sections

 

suppose