FREE BOOKS

Author's List




PREV.   NEXT  
|<   9   10   11   12   13   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33  
34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   >>   >|  
f the height, and now that the two tubes are side by side you see the water in the smaller tube standing twice as high as it does in the larger tube. In the same way, if I were to take a tube as fine as a hair the water would go up ever so much higher. It is for this reason that this is called Capillarity, from the Latin word _capillus_, a hair, because the action is so marked in a tube the size of a hair. [Illustration: Fig. 8.] Supposing now you had a great number of tubes of all sizes, and placed them in a row with the smallest on one side and all the others in the order of their sizes, then it is evident that the water would rise highest in the smallest tube and less and less high in each tube in the row (Fig. 8), until when you came to a very large tube you would not be able to see that the water was raised at all. You can very easily obtain the same kind of effect by simply taking two square pieces of window glass and placing them face to face with a common match or small fragment of anything to keep them a small distance apart along one edge while they meet together along the opposite edge. An india-rubber ring stretched over them will hold them in this position. I now take this pair of plates and stand it in a dish of coloured water, and you at once see that the water creeps up to the top of the plates on the edge where they meet, and as the distance between the plates gradually increases, so the height to which the water rises gradually gets less, and the result is that the surface of the liquid forms a beautifully regular curve which is called by mathematicians a rectangular hyperbola (Fig. 9). I shall have presently to say more about this and some other curves, and so I shall not do more now than state that the hyperbola is formed because as the width between the plates gets greater the height gets less, or, what comes to the same thing, because the weight of liquid pulled up at any small part of the curve is always the same. [Illustration: Fig. 9.] If the plates or the tubes had been made of material not wetted by water, then the effect of the tension of the surface would be to drag the liquid away from the narrow spaces, and the more so as the spaces were narrower. As it is not easy to show this well with paraffined glass plates or tubes and water, I shall use another liquid which does not wet or touch clean glass, namely, quicksilver. As it is not possible to see through quicksilver, it will not do
PREV.   NEXT  
|<   9   10   11   12   13   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33  
34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   >>   >|  



Top keywords:

plates

 

liquid

 
height
 

gradually

 

smallest

 

hyperbola

 

surface

 

effect

 

distance

 

called


spaces
 
quicksilver
 
Illustration
 

paraffined

 

coloured

 

regular

 
beautifully
 

increases

 

result

 

mathematicians


creeps
 

narrow

 

greater

 

material

 

weight

 

pulled

 

formed

 

presently

 

narrower

 

wetted


tension
 

curves

 

rectangular

 

square

 

marked

 

Supposing

 

action

 

capillus

 

number

 

evident


highest
 

Capillarity

 

reason

 

larger

 

standing

 
smaller
 

higher

 

fragment

 

opposite

 

position