FREE BOOKS

Author's List




PREV.   NEXT  
|<   266   267   268   269   270   271   272   273   274   275   276   277   278   279   280   281   282   283   284   285   286   287   288   289   290  
291   292   293   294   295   296   297   298   299   300   301   302   303   304   305   306   307   308   309   310   311   312   313   314   315   >>   >|  
all the old plates with a new coarse toothed hacksaw, a sharp key hole saw, or any good saw which has a wide set, close to the post. This separates the entire group of plates from the post in one short operation. This method is much better than the one of sawing the plates off below the connecting strap, and sawing or punching the old plate ends out of the strap. See page 217 for instructions for welding plates to the straps. Work on the Jars The work on the jars consists of removing any sediment which may have collected, washing out all dirt, and replacing leaky jars. The removal of sediment and washing should be done after the preliminary charge has been given and the old electrolyte poured out unless the preliminary charge was given with distilled water in the jars. The old electrolyte need not be poured down the sewer, but may be kept in stone or earthenware jars and used later in making electrical tests to locate leaky jars. Testing Jars Remove all sealing compound from the jar by means of a hot putty knife, finishing by wiping with a gasoline soaked rag. Inspect each jar carefully under a strong light for cracks and leaks. If you know which jar is leaky by having filled each cell with water up to the correct level, when you made the first examination of the battery, and then having it allowed to stand over night to see if the electrolyte in any cell has dropped below the tops of the plates, no tests are necessary, but if you are in doubt as to which jar, if any, is leaky, you must make tests to determine which jar is leaky. If you know that there is no leaky jar, because of the bottom of the case not being acid eaten and rotted, it is, of course, not necessary to test the jars. One test consists in filling the jar within about an inch of the top with old or weak electrolyte, partly immersing the jar in a tank which also contains electrolyte, and applying a voltage of 110 or 220 between the electrolyte in the jar and the electrolyte in the tank in which the jar is partly immersed. If current Vows, this indicates that the jar is leaky. [Fig. 220 Testing jar for leaks, using a 15-watt lamp in series with test circuit] Fig. 220 shows the principle of the test. A suitable box,--an old battery case will do--is lined with sheet lead, and the lead lining is connected to either side of the 110 or 220 volt line. The box is then partly filled with weak electrolyte. The jar to be tested is fill
PREV.   NEXT  
|<   266   267   268   269   270   271   272   273   274   275   276   277   278   279   280   281   282   283   284   285   286   287   288   289   290  
291   292   293   294   295   296   297   298   299   300   301   302   303   304   305   306   307   308   309   310   311   312   313   314   315   >>   >|  



Top keywords:
electrolyte
 

plates

 

partly

 

charge

 

sediment

 

washing

 

preliminary

 
Testing
 

filled

 
battery

consists

 

poured

 

sawing

 

determine

 

bottom

 
dropped
 

allowed

 
tested
 

lining

 

toothed


connected

 
voltage
 

series

 

circuit

 

applying

 

immersed

 

current

 
examination
 

filling

 

coarse


rotted
 

immersing

 
principle
 

suitable

 

collected

 

removing

 

replacing

 

removal

 

straps

 

welding


entire

 

method

 

operation

 
connecting
 
instructions
 

separates

 
punching
 

distilled

 

Inspect

 

carefully