FREE BOOKS

Author's List




PREV.   NEXT  
|<   296   297   298   299   300   301   302   303   304   305   306   307   308   309   310   311   312   313   314   315   316   317   318   319   320  
321   322   323   324   325   326   327   328   329   330   331   332   333   334   335   336   337   338   339   340   341   342   343   344   345   >>   >|  
which form a large percentage of battery trouble. Fig. 263 shows clearly the construction of the old type of plate. Each isolator used in the old type of plate consists of two notched strips of celluloid, with a plain celluloid strip between them. The notches are as wide as the plates are thick, the teeth between the notches fitting into the spaces between plates, thus holding the plates at the correct distances apart. The plain celluloid strip holds the notched strips in place. At each corner of the Vesta plate is a slot into which the isolator fits, as shown in Fig. 263. Since the teeth on the two notched pieces of each isolator hold the plates apart, they cannot "cut-out" or "short-out" by pinching through the wooden separators, or "impregnated mats" as they are called by the Vesta Company. The celluloid of which the isolators are made are not attacked by the electrolyte at ordinary temperatures. At higher temperatures, however, the electrolyte slowly dissolves the isolators. The condition of the isolator, therefore, may be used to determine whether the temperature of the electrolyte has been allowed to rise above 100 deg. Fahrenheit. The Vesta Type "D" Battery The appearance of a group of the new Type "D" construction is shown in Fig. 265, where Type "C" and Type "D" groups are illustrated side by side for purposes of comparison. It will be seen that the "D" isolator is of one piece only (shown separately in Fig. 266). The material is a heavy hard rubber stock which will be no more affected by acid or by electrical conditions in the cell than the hard rubber battery jar itself. The indentations on the two edges of isolator engage in hook shaped lugs on plate edges (Fig. 267 shows these clearly) and lock the plates apart fully as efficiently as the three-piece construction. [Fig. 264 Cross section, Vesta Isolator Battery, type C] There are a number of important advantages which have been gained by the new method of isolation. The illustration (Fig. 265) shows how the "D" isolator permits the separators to completely cover and project slightly beyond the edges of the plates, whereas in the old construction there is an edge just above the isolators where the plates are not covered. This improvement means protection against shorts due to flaking, always so likely to occur during the summer "overcharging" season. Overcharging is, of course, a form of abuse, and Type "D" batteries are designed to meet this
PREV.   NEXT  
|<   296   297   298   299   300   301   302   303   304   305   306   307   308   309   310   311   312   313   314   315   316   317   318   319   320  
321   322   323   324   325   326   327   328   329   330   331   332   333   334   335   336   337   338   339   340   341   342   343   344   345   >>   >|  



Top keywords:
plates
 

isolator

 

construction

 

celluloid

 

electrolyte

 

isolators

 

notched

 
temperatures
 

separators

 
rubber

Battery

 

battery

 

strips

 

notches

 

section

 
efficiently
 

Overcharging

 
conditions
 

electrical

 

affected


shaped

 
Isolator
 

engage

 

indentations

 

designed

 

batteries

 

season

 
covered
 

protection

 

flaking


improvement
 

slightly

 
gained
 

method

 

advantages

 

important

 

number

 

shorts

 

overcharging

 

isolation


illustration

 

project

 

completely

 
permits
 
summer
 

pieces

 
pinching
 

called

 

Company

 

impregnated