FREE BOOKS

Author's List




PREV.   NEXT  
|<   316   317   318   319   320   321   322   323   324   325   326   327   328   329   330   331   332   333   334   335   336   337   338   339   340  
341   342   343   344   345   346   347   348   349   350   351   352   353   354   355   356   357   358   359   360   361   362   363   364   365   >>   >|  
ffectually, although a plate of glass is generally laid over part of the top of the jar, and that dirt and dust may fall into the jar. Size. The capacity of storage battery cells is rated in ampere hours, while power consumed by lights, motors, etc., is measured in watt hours, or kilowatt hours. However, the ampere hour capacity of a battery can be changed to watt hours since watt hours is equal to Watt hours = ampere hours multiplied by the volts If we have a 16 cell battery, each cell of which is an 80 ampere hour cell, the ampere hour capacity of the entire battery will be 80, the same as that of one of its cells, since the cells are all in series and the same current passes through all cells. The watt hour capacity of the battery will be 32 times 80, or 2560. The ampere hour capacity is computed for the 8 hour rate, that is, the current is drawn from the battery continuously for 8 hours, and at the end of that time the battery is discharged. If the current is not drawn from the battery continuously for 8 hours, but is used for shorter intervals intermittently, the ampere hour capacity of the battery will be somewhat greater. It seldom occurs that in any installation the battery is used continuously for eight hours at a rate which will discharge it in that time, and hence a greater capacity is obtained from the battery. Some manufacturers do not rate their batteries at the 8 hour continuous discharge rate but use the intermittent rate, thus rating a battery 30 to 40 percent higher. Rated in this way, a battery of 16 cells rated at 80 ampere hours at the 8 hour rate would be rated at 112 ampere hours, or 3584 watt hours. In determining the size of the battery required, estimate as nearly as possible how many lamps, motors, and heaters, etc., will be used. Compute the watts (volts X amperes), required by each. Estimate how long each appliance will be used each day, and thus obtain the total watt hours used per day. Multiply this by 7 to get the watt hours per week. The total watt hours required in one week should not be equal to more than twice the watt hour capacity of the battery (ampere hours multiplied by the total battery voltage) at the eight hour rate. This means that the battery should not require a charge oftener than two times a week. The capacity of a battery is often measured in the number of lamps it will burn brightly for eight hours. The watts consumed by motors, heaters, etc., may be expre
PREV.   NEXT  
|<   316   317   318   319   320   321   322   323   324   325   326   327   328   329   330   331   332   333   334   335   336   337   338   339   340  
341   342   343   344   345   346   347   348   349   350   351   352   353   354   355   356   357   358   359   360   361   362   363   364   365   >>   >|  



Top keywords:
battery
 

ampere

 

capacity

 

required

 

continuously

 

current

 

motors

 
greater
 

heaters

 
discharge

multiplied

 

measured

 

consumed

 

Compute

 

Estimate

 
amperes
 

However

 
changed
 

estimate

 

determining


appliance

 
kilowatt
 

charge

 

oftener

 

require

 

brightly

 

number

 
voltage
 

Multiply

 

obtain


entire
 

lights

 
ffectually
 

higher

 

percent

 

discharged

 

intervals

 

shorter

 

generally

 

passes


series

 

computed

 

intermittently

 
continuous
 
batteries
 

intermittent

 
rating
 

manufacturers

 

occurs

 

seldom