FREE BOOKS

Author's List




PREV.   NEXT  
|<   311   312   313   314   315   316   317   318   319   320   321   322   323   324   325   326   327   328   329   330   331   332   333   334   335  
336   337   338   339   340   341   342   343   344   345   346   347   348   349   350   351   352   353   354   355   356   357   358   359   360   >>   >|  
ants differ considerably from the starting batteries used on automobiles. The starting battery is called upon to deliver very heavy currents for short intervals. On the car the battery is always being charged when the car is running at a moderate speed or over. The battery must fit in the limited space provided for it on the car, and must not lose any electrolyte as the car jolts along over the road. It is subjected to both high and low temperatures; and is generally on a car whose owner often does not know that his car has such a thing as a battery until his starting motor some day fails to turn over the engine. All starting batteries have wooden cases (some now use rubber cases), hard rubber jars, and sealed on covers. The case contains all the cells of the battery. Automobile batteries have, therefore, become highly standardized, and to the uninformed, one make looks just like any other. Farm lighting batteries, on the other hand, are not limited as to space they occupy, are not subjected to irregular charging and discharging, do not need leak proof covers, and are not called upon to delivery very heavy currents for short periods. These facts are taken advantage of by the manufacturers, who have designed their farm lighting batteries to give a much longer life than is possible in the automobile battery. As a result the farm lighting battery differs from the automobile battery in a number of respects. Jars. Both glass and rubber are used for farm lighting battery jars, and they may or may not have sealed-in covers. Fig. 294 shows a glass jar of an Exide battery having a hard rubber cover, and Fig. 295 shows a Prest-O-Lite glass jar cell having a cover made of lead and antimony. Unsealed glass jars, such as the Exide type shown in Fig. 324, generally have a plate of glass placed across the top to catch acid spray when the cell is gassing. Each jar with its plates and electrolyte forms a complete and separate unit which may easily be disconnected from the other cells of the battery by removing the bolts which join them. In working on a farm lighting battery, the repairman, therefore, works with individual cells instead of the battery as a whole, as is done with automobile batteries. [Fig. 294 Exide "Delco Light" farming lighting cell with hard rubber cover] Batteries with sealed jars are generally shipped completely assembled and filled with electrolyte, and need only a freshening charge before being put i
PREV.   NEXT  
|<   311   312   313   314   315   316   317   318   319   320   321   322   323   324   325   326   327   328   329   330   331   332   333   334   335  
336   337   338   339   340   341   342   343   344   345   346   347   348   349   350   351   352   353   354   355   356   357   358   359   360   >>   >|  



Top keywords:
battery
 

lighting

 

batteries

 

rubber

 

starting

 

generally

 

covers

 
automobile
 

sealed

 
electrolyte

subjected

 

currents

 

called

 

limited

 

Unsealed

 
number
 

respects

 
differs
 

antimony

 

result


farming

 
repairman
 

individual

 

Batteries

 

shipped

 

charge

 

freshening

 
completely
 

assembled

 

filled


working
 

gassing

 
plates
 

complete

 

removing

 

disconnected

 

separate

 

easily

 

temperatures

 

intervals


deliver

 

automobiles

 

differ

 
considerably
 
charged
 

running

 
provided
 

moderate

 

engine

 

delivery