FREE BOOKS

Author's List




PREV.   NEXT  
|<   8   9   10   11   12   13   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32  
33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   >>   >|  
oints that these erectors could not be moved from working to working. The result was that about 58% of the lining was built by hand. At first thought, this seems to be a crude and extravagant method, as the plates weighed about 1 ton each and about 20,000 were erected by hand. As it turned out, the cost was not greater than for those erected by machinery, taking into account the cost of erectors and power. This, however, was largely because the hand erection reduced the amount of work to be done by the machines so much that the machines had an undue plant charge. The hand erection was very simple. A portable hand-winch, with a 3/8-in. wire rope, was set in any convenient place. The wire rope was carried to a snatch-block fastened to the top of the iron previously built; or, where the roof was in soft ground, the timbering furnished points of attachment. The end of the wire rope was then hooked to a bolt hole in a new plate, two men at the winch lifted the plate, and three or four others swung it into approximate place, and, with the aid of bars and drift-pins, coaxed it into position and bolted it. Where there was no timbering above the iron, sometimes the key and adjoining plates were set on blocking on a timber staging and then jacked up to place. LONG ISLAND SHAFTS. The river shafts were designed to serve both as working shafts and as permanent openings to the tunnels, and were larger and more substantial than would have been required for construction purposes. Plate X of Mr. Noble's paper shows their design. They consist of two steel caissons, each 40 by 74 ft. in plan, with walls 5 ft. thick filled with concrete. A wall 6 ft. thick separated each shaft into two wells 29 by 30 ft., each directly over a tunnel. Circular openings for the tunnel, 25 ft. in diameter, were provided in the sides of the caissons. During the sinking these were closed by bulkheads of steel plates backed by horizontal steel girders. The shafts were sunk as pneumatic caissons to a depth of 78 ft. below mean high water. There have been a few caissons which were larger and were sunk deeper than these, but most large caissons have been for foundations, such as bridge piers, and have been stopped at or a little below the surface of the rock. The unusual feature of the caissons for the Long Island shaft is that they were sunk 54 ft. through rock. It had been hoped that the rock would prove sound enough to permit stopping the caissons at o
PREV.   NEXT  
|<   8   9   10   11   12   13   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32  
33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   >>   >|  



Top keywords:
caissons
 

shafts

 

plates

 
working
 

machines

 

tunnel

 
erection
 

erectors

 

erected

 
larger

timbering

 

openings

 

filled

 
concrete
 
separated
 

substantial

 

required

 

construction

 
purposes
 

tunnels


designed

 

permanent

 

consist

 

design

 

horizontal

 

surface

 

unusual

 

feature

 

stopped

 

foundations


bridge

 

Island

 
permit
 

stopping

 

During

 
sinking
 

closed

 

bulkheads

 

provided

 

diameter


directly

 

Circular

 
backed
 

girders

 

deeper

 
pneumatic
 

largely

 
reduced
 
amount
 
machinery