FREE BOOKS

Author's List




PREV.   NEXT  
|<   100   101   102   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123   124  
125   126   127   128   129   130   131   132   133   134   135   136   137   138   139   140   141   142   143   144   145   146   147   148   149   >>   >|  
te directions to be generated in these portions of the loop, and these will tend to aid each other in causing a current to circulate in the loop in the direction shown by the arrows associated with the dotted representation of the loop. It is evident that as the motion of the loop progresses, the rate of cutting the lines of force will increase and will be a maximum when the loop reaches a horizontal position, or at that time the two portions of the loop that are parallel with the axis will be traveling at right angles to the lines of force. At this point, therefore, the electromotive force and the current will be a maximum. From this point until the loop again assumes a vertical position, the cutting of the lines of force will still be in the same direction, but at a constantly decreasing rate, until, finally, when the loop is vertical the movement of the parts of the loop that are parallel with the axis will be in the direction of the lines of force and, therefore, no cutting will take place. At this point, therefore, the electromotive force and the current in the loop again will be zero. We have seen, therefore, that in this half revolution of the loop from the time when it was in a vertical position to a time when it was again in a vertical position but upside down, the electromotive force varied from zero to a maximum and back to zero, and the current did the same. It is easy to see that, as the loop moves through the next half revolution, an exactly similar rise and fall of electromotive force and current will take place; but this will be in the opposite direction, since that portion of the loop which was going down through the lines of force is now going up, and the portion which was previously going up is now going down. The law concerning the generation of electromotive force and current in a conductor that is cutting through lines of magnetic force, may be stated in another way, when the conductor is bent into the form of a loop, as in the case under consideration: Thus, _if the number of lines of force which pass through a conducting loop be varied, electromotive forces will be generated in the loop_. This will be true whether the number of lines passing through the loop be varied by moving the loop within the field of force or by varying the field of force itself. In any case, _if the number of lines of force be increased, the current will flow in one way, and if it be diminished the current will flow
PREV.   NEXT  
|<   100   101   102   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123   124  
125   126   127   128   129   130   131   132   133   134   135   136   137   138   139   140   141   142   143   144   145   146   147   148   149   >>   >|  



Top keywords:

current

 

electromotive

 
position
 

cutting

 

direction

 

vertical

 

maximum

 
number
 

varied


conductor

 

revolution

 

generated

 

portion

 
portions
 
parallel
 

moving

 

increased

 
previously

forces

 

opposite

 
diminished
 

conducting

 
passing
 

consideration

 

stated

 

generation

 

magnetic


varying

 

finally

 
progresses
 

motion

 

evident

 

representation

 
increase
 

reaches

 
traveling

horizontal
 

dotted

 

directions

 
arrows
 

circulate

 
causing
 
angles
 

upside

 

similar


decreasing

 

constantly

 
assumes
 
movement