FREE BOOKS

Author's List




PREV.   NEXT  
|<   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   131  
132   133   134   135   136   137   138   139   140   141   142   143   144   145   146   147   148   149   150   151   152   153   154   155   156   >>   >|  
rovided on its end with an insulating stud _1_, against which a switching spring _2_ bears. This spring normally rests against another switch spring _3_, but when the generator crank shaft moves to the right upon the turning of the crank, the spring _2_ disengages spring _3_ and engages spring _4_, thus completing the circuit of the generator armature. It is seen that this operation accomplishes the breaking of one circuit and the making of another, a function that will be referred to later on in this work. [Illustration: Fig. 76. Generator Cut-in Switch] Pulsating Current. Sometimes it is desirable to have a generator capable of developing a pulsating current instead of an alternating current; that is, a current which will consist of impulses all in one direction rather than of impulses alternating in direction. It is obvious that this may be accomplished if the circuit of the generator be broken during each half revolution so that its circuit is completed only when current is being generated in one direction. Such an arrangement is indicated diagrammatically in Fig. 77. Instead of having one terminal of the armature winding brought out through the frame of the generator as is ordinarily done, both terminals are brought out to a commuting device carried on the end of the armature shaft. Thus, one end of the loop representing the armature winding is shown connected directly to the armature pin _1_, against which bears a spring _2_, in the usual manner. The other end of the armature winding is carried directly to a disk _3_, mounted _on_ but insulated _from_ the shaft and revolving therewith. One-half of the circumferential surface of this disk is of insulating material _4_ and a spring _5_ rests against this disk and bears alternately upon the conducting portion _3_ or the insulating portion _4_, according to the position of the armature in its revolution. It is obvious that when the generator armature is in the position shown the circuit through it is from the spring _2_ to the pin _1_; thence to one terminal of the armature loop; thence through the loop and back to the disk _3_ and out by the spring _5_. If, however, the armature were turned slightly, the spring _5_ would rest on the insulating portion _4_ and the circuit would be broken. [Illustration: Fig. 77. Pulsating-Current Commutator] [Illustration: Fig. 78. Generator Symbols] It is obvious that if the brush _5_ is so disposed as to make contact w
PREV.   NEXT  
|<   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   131  
132   133   134   135   136   137   138   139   140   141   142   143   144   145   146   147   148   149   150   151   152   153   154   155   156   >>   >|  



Top keywords:
spring
 

armature

 

circuit

 
generator
 

current

 

insulating

 

obvious

 

portion

 

Illustration

 

winding


direction

 
impulses
 

Pulsating

 
alternating
 
carried
 

terminal

 

brought

 

Generator

 

broken

 

directly


revolution

 

Current

 

position

 

Symbols

 

representing

 
connected
 

turned

 

slightly

 

commuting

 

Commutator


terminals

 

disposed

 
device
 

circumferential

 

therewith

 

revolving

 

surface

 

contact

 

material

 

conducting


insulated
 
manner
 

alternately

 

mounted

 

accomplishes

 
breaking
 

operation

 
completing
 
making
 

function