FREE BOOKS

Author's List




PREV.   NEXT  
|<   140   141   142   143   144   145   146   147   148   149   150   151   152   153   154   155   156   157   158   159   160   161   162   163   164  
165   166   167   168   169   170   171   172   173   174   175   176   177   178   179   180   181   182   183   184   185   186   187   188   189   >>   >|  
und coils, the number of turns per linear inch and per square inch of B.&S. gauge wires from No. 20 to No. 40 have been tabulated, and these, supplemented by a tabulation of the number of ohms per cubic inch of winding space for wires of three different kinds of insulation, are given in Table IV. Bearing in mind that the calculations of Table IV are all based upon the "diameter over insulation," which it states at the outset for each of four different kinds of covering, it is evident what is meant by "turns per linear inch." The columns referring to "turns per square inch" mean the number of turns, the ends of which would be exposed in one square inch if the wound coil were cut in a plane passing through the axis of the core. Knowing the distance between the head, and the depth to which the coil is to be wound, it is easy to select a size of wire which will give the required number of turns in the provided space. It is to be noted that the depth of winding space is one-half of the difference between the core diameter and the complete diameter of the wound coil. The resistance of the entire volume of wound wire may be determined in advance by knowing the total cubic contents of the winding space and multiplying this by the ohms per cubic inch of the selected wire; that is, one must multiply in inches the distance between the heads of the spool by the difference between the squares of the diameters of the core and the winding space, and this in turn by .7854. This result, times the ohms per cubic inch, as given in the table, gives the resistance of the winding. There is a considerable variation in the method of applying silk insulation to the finer wires, and it is in the finer sizes that the errors, if any, pile up most rapidly. Yet the table throughout is based on data taken from many samples of actual coil winding by the present process of winding small coils. It should be said further that the table does not take into account the placing of any layers of paper between the successive layers of the wires. This table has been compared with many examples and has been used in calculating windings in advance, and is found to be as close an approximation as is afforded by any of the formulas on the subject, and with the further advantage that it is not so cumbersome to apply. _Winding Calculations._ In experimental work, involving the winding of coils, it is frequently necessary to try one winding to determine its eff
PREV.   NEXT  
|<   140   141   142   143   144   145   146   147   148   149   150   151   152   153   154   155   156   157   158   159   160   161   162   163   164  
165   166   167   168   169   170   171   172   173   174   175   176   177   178   179   180   181   182   183   184   185   186   187   188   189   >>   >|  



Top keywords:

winding

 
number
 

insulation

 

square

 

diameter

 

distance

 
layers
 
resistance
 

difference

 

advance


linear

 

applying

 

method

 

considerable

 

variation

 
process
 

rapidly

 
actual
 

present

 

errors


samples

 

account

 

successive

 
Calculations
 

experimental

 

Winding

 

cumbersome

 

involving

 
determine
 

frequently


advantage

 

subject

 
examples
 

compared

 

calculating

 

windings

 
afforded
 
formulas
 

approximation

 

placing


result
 

passing

 

Bearing

 

calculations

 

select

 

Knowing

 

exposed

 
covering
 

outset

 
states