FREE BOOKS

Author's List




PREV.   NEXT  
|<   115   116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   131   132   133   134   135   136   137   138   139  
140   141   142   143   144   145   146   147   148   149   150   151   152   153   154   155   156   157   158   159   160   161   162   163   164   >>   >|  
and engaging the under side of the hook lever at the point _4_. Attached to the lever arm _1_ is an insulated pin _6_. The contact springs by which the various electrical circuits are made and broken are shown at _7_, _8_, _9_, _10_, and _11_, these being mounted in one group with insulated bushings between them; the entire group is secured by machine screws to a lug projecting horizontally from the bracket _5_. The center spring _9_ is provided with a forked extension which embraces the pin _6_ on the hook lever. It is obvious that an up-and-down motion of the hook lever will move the long spring _9_ in such manner as to cause electrical contact either between it and the two upper springs _7_ and _8_, or between it and the two lower springs _10_ and _11_. The hook is shown in its raised position, which is the position required for talking. When lowered the two springs _7_ and _8_ are disengaged from the long spring _9_ and from each other, and the three springs _9_, _10_, and _11_ are brought into electrical engagement, thus establishing the necessary signaling conditions. [Illustration: Fig. 83. Long Lever Hook Switch] The right-hand ends of the contact springs are shown projecting beyond the insulating supports. This is for the purpose of facilitating making electrical joints between these springs and the various wires which lead from them. These projecting ends are commonly referred to as ears, and are usually provided with holes or notches into which the connecting wire is fastened by soldering. _Western Electric._ Fig. 84 shows the type of hook switch quite extensively employed by the Western Electric Company in wall telephone sets where the space is somewhat limited and a compact arrangement is desired. It will readily be seen that the principle on which this hook switch operates is similar to that employed in Fig. 83, although the mechanical arrangement of the parts differs radically. The hook lever _1_ is pivoted at _3_ on a bracket _2_, which serves to support all the other parts of the switch. The contact springs are shown at _4_, _5_, and _6_, and this latter spring _6_ is so designed as to make it serve as an actuating spring for the hook. This is accomplished by having the curved end of this spring press against the lug _7_ of the hook and thus tend to raise the hook when it is relieved of the weight of the receiver. The two shorter springs _8_ and _9_ have no electrical function but merely serve as
PREV.   NEXT  
|<   115   116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   131   132   133   134   135   136   137   138   139  
140   141   142   143   144   145   146   147   148   149   150   151   152   153   154   155   156   157   158   159   160   161   162   163   164   >>   >|  



Top keywords:
springs
 

spring

 

electrical

 
contact
 

projecting

 

switch

 

Electric

 

provided

 

employed

 

position


arrangement

 
Western
 

insulated

 
bracket
 
limited
 

compact

 

operates

 

similar

 

desired

 

principle


readily

 

telephone

 

soldering

 

fastened

 

Attached

 
Company
 

extensively

 

differs

 

curved

 

relieved


weight

 

function

 
receiver
 

shorter

 

accomplished

 

serves

 

pivoted

 

radically

 

connecting

 

support


engaging
 
actuating
 

designed

 

mechanical

 

referred

 
mounted
 

bushings

 
raised
 
lowered
 

disengaged