FREE BOOKS

Author's List




PREV.   NEXT  
|<   99   100   101   102   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123  
124   125   126   127   128   129   130   131   132   133   134   135   136   137   138   139   140   141   142   143   144   145   146   147   148   >>   >|  
nd being bored out so as to form a cylindrical recess between them as indicated. The direction of the magnetic lines of force set up by the bar magnet through the interpolar space is indicated by the long horizontal arrows, this flow being from the north pole (N) to the south pole (S) of the magnet. At _4_ there is shown a loop of wire supposed to revolve in the magnetic field of force on the axis _5-5_. Theory. In order to understand how currents will be generated in this loop of wire _4_, it is only necessary to remember that if a conductor is so moved as to cut across magnetic lines of force, an electromotive force will be set up in the conductor which will tend to make the current flow through it. The magnitude of the electromotive force will depend on the rate at which the conductor cuts through the lines of force, or, in other words, on the number of lines of force that are cut through by the conductor in a given unit of time. Again, the direction of the electromotive force depends on the direction of the cutting, so that if the conductor be moved in one direction across the lines of force, the electromotive force and the current will be in one direction; while if it moves in the opposite direction across the lines of force, the electromotive force and the current will be in the reverse direction. It is, evident that as the loop of wire _4_ revolves in the field of force about the axis _5-5_, the portions of the conductor parallel to the axis will cut through the lines of force, first in one direction and then in the other, thus producing electromotive forces therein, first in one direction and then in the other. Referring now to Fig. 68, and supposing that the loop _4_ is revolving in the direction of the curved arrow shown between the upper edges of the pole pieces, it will be evident that just as the loop stands in the vertical position, its horizontal members will be moving in a horizontal direction, parallel with the lines of force and, therefore, not cutting them at all. The electromotive force and the current will, therefore, be zero at this time. As the loop advances toward the position shown in dotted lines, the upper portion of the loop that is parallel with the axis will begin to cut downwardly through the lines of force, and likewise the lower portion of the loop that is parallel with the axis will begin to cut upwardly through the lines of force. This will cause electromotive forces in opposi
PREV.   NEXT  
|<   99   100   101   102   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123  
124   125   126   127   128   129   130   131   132   133   134   135   136   137   138   139   140   141   142   143   144   145   146   147   148   >>   >|  



Top keywords:

direction

 
electromotive
 

conductor

 

current

 

parallel

 

magnetic

 

horizontal

 

cutting

 

portion


evident

 

position

 

forces

 

magnet

 

producing

 

supposing

 

Referring

 

revolves

 

portions


members

 

dotted

 

downwardly

 

advances

 

likewise

 

opposi

 

upwardly

 

pieces

 

curved


stands

 

vertical

 

moving

 

reverse

 

revolving

 
supposed
 
Theory
 

revolve

 

arrows


cylindrical

 

recess

 

interpolar

 

understand

 

number

 

depends

 

generated

 

currents

 

remember


depend

 

magnitude

 

opposite