FREE BOOKS

Author's List




PREV.   NEXT  
|<   143   144   145   146   147   148   149   150   151   152   153   154   155   156   157   158   159   160   161   162   163   164   165   166   167  
168   169   170   171   172   173   174   175   176   177   178   179   180   181   182   183   184   185   186   187   188   189   190   191   192   >>   >|  
uch used. An impedance coil having an open magnetic circuit is shown in section in Fig. 101, Fig. 102 showing its external appearance and illustrating particularly the method of bringing out the terminals of the winding. [Illustration: Fig. 101. Section of Open-Circuit Impedance Coil] [Illustration: Fig. 102. Open-Circuit Impedance Coil] [Illustration: Fig. 103. Closed-Circuit Impedance Coil] Closed-Circuit:--A type of retardation coil which is largely used in systems of simultaneous telegraphy and telephony, known as _composite systems_, is shown in Fig. 103. In the construction of this coil the core is made of a bundle of fine iron wires first bent into U-shape, and then after the coils are in place, the free ends of the core are brought together to form a closed magnetic circuit. The coils have a large number of turns of rather coarse wire. The conditions surrounding the use of this coil are those which require very high impedance and rather large current-carrying capacity, and fortunately the added requirement, that it shall be placed in a very small space, does not exist. Toroidal:--Another type of retardation coil, called the toroidal type due to the fact that its core is a torus formed by winding a continuous length of fine iron wire, is shown in diagram in Fig. 104. The two windings of this coil may be connected in series to form in effect a single winding, or it may be used as a "split-winding" coil, the two windings being in series but having some other element, such as a battery, connected between them in the circuit. Evidently such a coil, however connected, is well adapted for high impedance, on account of the low reluctance of its core. [Illustration: Fig. 104. Symbol of Toroidal Impedance Coil] This coil is usually mounted on a base-board, the coil being enclosed in a protecting iron case, as shown in Fig. 105. The terminal wires of both windings of each coil are brought out to terminal punchings on one end of the base-board to facilitate the making of the necessary circuit connections. [Illustration: Fig. 105. Toroidal Impedance Coil] The usual diagrammatic symbol for an impedance coil is shown in Fig. 106. This is the same as for an ordinary bar magnet, except that the parallel lines through the core may be taken as indicating that the core is laminated, thus conveying the idea of high impedance. The symbol of Fig. 104 is a good one for the toroidal type of impedance coil. [Illust
PREV.   NEXT  
|<   143   144   145   146   147   148   149   150   151   152   153   154   155   156   157   158   159   160   161   162   163   164   165   166   167  
168   169   170   171   172   173   174   175   176   177   178   179   180   181   182   183   184   185   186   187   188   189   190   191   192   >>   >|  



Top keywords:
impedance
 

Impedance

 

Illustration

 
Circuit
 

winding

 

circuit

 

connected

 

windings

 

Toroidal

 

series


terminal

 
toroidal
 

brought

 
systems
 
retardation
 

Closed

 

symbol

 

magnetic

 

laminated

 

Evidently


indicating

 

battery

 

effect

 

single

 

Illust

 
conveying
 

adapted

 

element

 

account

 

diagrammatic


punchings

 

making

 
connections
 

protecting

 

enclosed

 

reluctance

 

facilitate

 

parallel

 

Symbol

 

ordinary


mounted
 
magnet
 

current

 

construction

 

bundle

 
composite
 

telephony

 
telegraphy
 
simultaneous
 

showing