FREE BOOKS

Author's List




PREV.   NEXT  
|<   142   143   144   145   146   147   148   149   150   151   152   153   154   155   156   157   158   159   160   161   162   163   164   165   166  
167   168   169   170   171   172   173   174   175   176   177   178   179   180   181   182   183   184   185   186   187   188   189   190   191   >>   >|  
of soft iron wires. The use of laminated cores is for the purpose of preventing eddy currents, which, if allowed to flow, would not only be wasteful of energy but would also tend to defeat the desired high impedance. Sometimes in iron-clad impedance coils, the iron shell is slotted longitudinally to break up the flow of eddy currents in the shell. Frequently electromagnetic coils have only the function of offering impedance, where no requirements exist for converting any part of the electric energy into mechanical work. Where this is the case, such coils are termed _impedance_, or _retardation_, or _choke coils_, since they are employed to impede or to retard or to choke back the flow of rapidly varying current. The distinction, therefore, between an impedance coil and the coil of an ordinary electromagnet is one of function, since structurally they may be the same, and the same principles of design and construction apply largely to each. _Number of Turns_. It should be remembered that an impedance coil obstructs the passage of fluctuating current, not so much by ohmic resistance as by offering an opposing or counter-electromotive force. Other things being equal, the counter-electromotive force of self-induction increases directly as the number of turns on a coil and directly as the number of lines of force threading the coil, and this latter factor depends also on the reluctance of the magnetic circuit. Therefore, to secure high impedance we need many turns or low reluctance, or both. Often, owing to requirements for direct-current carrying capacity and limitations of space, a very large number of turns is not permissible, in which case sufficiently high impedance to such rapid fluctuations as those of voice currents may be had by employing a magnetic circuit of very low reluctance, usually a completely closed circuit. _Kind of Iron. _An important factor in the design of impedance coils is the grade of iron used in the magnetic circuit. Obviously, it should be of the highest permeability and, furthermore, there should be ample cross-section of core to prevent even an approach to saturation. The iron should, if possible, be worked at that density of magnetization at which it has the highest permeability in order to obtain the maximum impedance effects. _Types._ Open-Circuit:--Where very feeble currents are being dealt with, and particularly where there is no flow of direct current, an open magnetic circuit is m
PREV.   NEXT  
|<   142   143   144   145   146   147   148   149   150   151   152   153   154   155   156   157   158   159   160   161   162   163   164   165   166  
167   168   169   170   171   172   173   174   175   176   177   178   179   180   181   182   183   184   185   186   187   188   189   190   191   >>   >|  



Top keywords:

impedance

 

circuit

 

magnetic

 

currents

 

current

 

reluctance

 

number

 

highest

 
factor
 

permeability


design
 

counter

 

direct

 
energy
 

electromotive

 
directly
 
function
 

offering

 

requirements

 

depends


permissible

 

limitations

 
capacity
 

Circuit

 
sufficiently
 

secure

 

Therefore

 

feeble

 
carrying
 

closed


approach

 

saturation

 

prevent

 

section

 

worked

 

effects

 

obtain

 

magnetization

 
density
 
employing

fluctuations

 

completely

 

maximum

 

Obviously

 

important

 

remembered

 

converting

 

electromagnetic

 

Frequently

 

electric