FREE BOOKS

Author's List




PREV.   NEXT  
|<   149   150   151   152   153   154   155   156   157   158   159   160   161   162   163   164   165   166   167   168   169   170   171   172   173  
174   175   176   177   178   179   180   181   182   183   184   185   186   187   188   189   190   191   192   193   194   195   196   197   198   >>   >|  
onductor employed. The resistance of conductors is subject to change by changes in temperature. While nearly all metals show an increase, carbon shows a decrease in its resistance when heated. The temperature coefficient of a conductor is a factor by which the resistance of the conductor at a given temperature must be multiplied in order to determine the change in resistance of that conductor brought about by a rise in temperature of one degree. TABLE V Temperature Coefficients +---------------------------+-----------------------------+ | PURE METALS | TEMPERATURE COEFFICIENTS | +---------------------------+--------------+--------------+ | | CENTIGRADE | FAHRENHEIT | +---------------------------+--------------+--------------+ | Silver (annealed) | 0.00400 | 0.00222 | | Copper (annealed) | 0.00428 | 0.00242 | | Gold (99.9%) | 0.00377 | 0.00210 | | Aluminum (99%) | 0.00423 | 0.00235 | | Zinc | 0.00406 | 0.00226 | | Platinum (annealed) | 0.00247 | 0.00137 | | Iron | 0.00625 | 0.00347 | | Nickel | 0.0062 | 0.00345 | | Tin | 0.00440 | 0.00245 | | Lead | 0.00411 | 0.00228 | | Antimony | 0.00389 | 0.00216 | | Mercury | 0.00072 | 0.00044 | | Bismuth | 0.00354 | 0.00197 | +---------------------------+--------------+--------------+ _Positive and Negative Coefficients._ Those conductors, in which a rise in temperature produces an increase in resistance, are said to have positive temperature coefficients, while those in which a rise in temperature produces a lowering of resistance are said to have negative temperature coefficients. The temperature coefficients of pure metals are always positive and for some of the more familiar metals, have values, according to Foster, as in Table V. Iron, it will be noticed, has the highest temperature coefficient of all. Carbon, on the other hand, has a large negative coefficient, as proved by the fact that the filament of an ordinary incandescent lamp has nearly twice the resistance when cold as when heated to full candle-power. Certain alloys have been produced which have very low temperature coeffi
PREV.   NEXT  
|<   149   150   151   152   153   154   155   156   157   158   159   160   161   162   163   164   165   166   167   168   169   170   171   172   173  
174   175   176   177   178   179   180   181   182   183   184   185   186   187   188   189   190   191   192   193   194   195   196   197   198   >>   >|  



Top keywords:

temperature

 

resistance

 

annealed

 
conductor
 
coefficients
 

coefficient

 

metals

 
increase
 

change

 

negative


conductors

 

Coefficients

 

positive

 
heated
 

produces

 

Positive

 

familiar

 
Mercury
 

Negative

 
Bismuth

values

 
lowering
 

candle

 

incandescent

 
Certain
 

coeffi

 

produced

 

alloys

 

ordinary

 

filament


noticed

 

highest

 

Foster

 

Carbon

 
proved
 

degree

 
brought
 
determine
 
Temperature
 

CENTIGRADE


FAHRENHEIT

 

COEFFICIENTS

 

TEMPERATURE

 
METALS
 

multiplied

 

subject

 

onductor

 
employed
 

carbon

 
factor