FREE BOOKS

Author's List




PREV.   NEXT  
|<   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94  
95   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   >>   >|  
e the diaphragm these bars clamp between them a cylindrical piece of iron _2_, so as to complete the magnetic circuit at the end. At the end nearest the diaphragm they clamp between them the ends of the soft iron pole pieces _3-3_, and also a block of composite metal _4_ having a large circular flange _4'_ which serves as a means for supporting the magnet structure within the shell. The screws by means of which the disk _4'_ is clamped to the shouldered seat in the shell do not enter the shell directly, but rather enter screw-threaded brass blocks which are moulded into the structure of the shell. It is seen from this construction that the diaphragm and the pole pieces and the magnet structure itself are all rigidly secured together through the medium of the shell at a point as close as possible to the diaphragm. Between the magnets _1-1_ there is clamped an insulating block _5_, to which are fastened the terminal plates _6_, one on each side of the receiver. These terminal plates are thoroughly insulated from the magnets themselves and from all other metallic parts by means of sheets of fiber, as indicated by the heavy black lines. On these plates _6_ are carried the binding posts for the receiver cord terminals. A long tongue extends from each of the plates _6_ through a hole in the disk _4'_, into the coil chamber of the receiver, at which point the terminal of the magnet winding is secured to it. This tongue is insulated from the disk _4'_, where it passes through it, by means of insulating bushing, as shown. The other terminal of the magnet coils is brought out to the other plate _6_ by means of a similar tongue on the other side. In order that the receiver terminals proper may not be subjected to any strain in case the receiver is dropped and its weight caught on the receiver cord, a strain loop is formed as a continuation of the braided covering of the receiver cord, and this is tied to the permanent magnet structure, as shown. By making this strain loop short, it is obvious that whatever pull the cord receives will not be taken by the cord conductors leading to the binding posts or by the binding posts or the cord terminals themselves. A number of other manufacturers have gone even a step further than this in securing permanency of adjustment between the receiver diaphragm and pole pieces. They have done this by not depending at all on the hard rubber shell as a part of the structure, but by enclosing the
PREV.   NEXT  
|<   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94  
95   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   >>   >|  



Top keywords:

receiver

 
diaphragm
 

magnet

 

structure

 

plates

 

terminal

 
tongue
 

terminals

 

strain

 

binding


pieces

 

clamped

 

secured

 
magnets
 
insulating
 

insulated

 

chamber

 

winding

 

subjected

 

proper


brought
 

passes

 
bushing
 

similar

 
making
 
leading
 

number

 

manufacturers

 

securing

 
permanency

rubber
 
enclosing
 
depending
 
adjustment
 

conductors

 

continuation

 

braided

 

covering

 

formed

 
caught

dropped

 

weight

 

permanent

 
receives
 

obvious

 

fastened

 

flange

 
serves
 

supporting

 

circular