FREE BOOKS

Author's List




PREV.   NEXT  
|<   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106   107  
108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   131   132   >>   >|  
tion. Secondary cells, commonly called _storage cells_ and _accumulators_, consist always of two inert plates of metal, or metallic oxide, immersed in an electrolyte which is incapable of acting on either of them until a current has first been passed through the electrolyte from one plate to the other. On the passage of a current in this way, the decomposition of the electrolyte is effected and the composition of the plates is so changed that one of them becomes electro-positive and the other electro-negative. The cell is then, when the _charging_ current ceases, capable of acting as a voltaic cell. This chapter is devoted to the primary cell or battery alone. Types of Primary Cells. Primary cells may be divided into two general classes: first, those adapted to furnish constant current; and second, those adapted to furnish only intermittent currents. The difference between cells in this respect rests largely in the means employed for preventing or lessening polarization. Obviously in a cell in which polarization is entirely prevented the current may be allowed to flow constantly until the cell is completely exhausted; that is, until the zinc is all eaten up or until the hydrogen is exhausted from the electrolyte or both. On the other hand some cells are so constituted that polarization takes place faster than the means intended to prevent it can act. In other words, the polarization gradually gains on the preventive means and so gradually reduces the current by increasing the resistance of the cell and lowering its electromotive force. In cells of this kind, however, the arrangement is such that if the cell is allowed to rest, that is, if the external circuit is opened, the depolarizing agency will gradually act to remove the hydrogen from the unattacked electrode and thus place the cell in good condition for use again. Of these two types of primary cells the intermittent-current cell is of far greater use in telephony than the constant-current cell. This is because the use of primary batteries in telephony is, in the great majority of cases, intermittent, and for that reason a cell which will give a strong current for a few minutes and which after such use will regain practically all of its initial strength and be ready for use again, is more desirable than one which will give a weaker current continuously throughout a long period of time. Since the cells which are adapted to give constant current are common
PREV.   NEXT  
|<   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106   107  
108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   131   132   >>   >|  



Top keywords:

current

 

polarization

 
electrolyte
 
gradually
 

intermittent

 

primary

 
adapted
 

constant

 

plates

 
furnish

allowed
 

Primary

 

exhausted

 

telephony

 

electro

 

hydrogen

 

acting

 

external

 

circuit

 

opened


depolarizing

 
electrode
 
unattacked
 

remove

 

agency

 
commonly
 

arrangement

 

preventive

 

called

 
reduces

condition
 
electromotive
 

lowering

 
increasing
 

resistance

 

Secondary

 
strength
 

initial

 

practically

 

regain


desirable

 

weaker

 
common
 

period

 

continuously

 

minutes

 

greater

 
passed
 

batteries

 

strong