FREE BOOKS

Author's List




PREV.   NEXT  
|<   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55  
56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   >>   >|  
, let us assume that the hole through the cast-iron disk, Fig. 39, has been cored considerably out of center, as shown. If the work is set by the outside surface _S_, as it would be ordinarily, the hole is so much out of center that it will not be true when bored to the finished size, as indicated by the dotted lines. On the other hand, if the rough hole is set true, the outside cannot be finished all over, without making the diameter too small, when it is finally turned. In such a case, the casting should be shifted, as shown by the arrow, to divide the error between the two surfaces, both of which can then be turned as shown by the dotted lines in the view to the right. This principle of dividing the error when setting work can often be applied in connection with turning and boring. After a casting or other part has been set true by the most important surface, all other surfaces which require machining should be tested to make sure that they all can be finished to the proper size. =Inaccuracy from Pressure of Chuck Jaws.=--Work that is held in a chuck is sometimes sprung out of shape by the pressure of the chuck jaws so that when the part is bored or turned, the finished surfaces are untrue after the jaws are released and the work has resumed its normal shape. This applies more particularly to frail parts, such as rings, thin cylindrical parts, etc. Occasionally the distortion can be prevented by so locating the work with relation to the chuck jaws that the latter bear against a rigid part. When the work cannot be held tightly enough for the roughing cuts without springing it, the jaws should be released somewhat before taking the finishing cut, to permit the part to spring back to its natural shape. [Illustration: Fig. 39. Diagram Illustrating Importance of Setting Work with Reference to Surfaces to be Turned] [Illustration: Fig. 40. Drilling in the Lathe] =Drilling and Reaming.=--When a hole is to be bored from the solid, it is necessary to drill a hole before a boring tool can be used. One method of drilling in the lathe is to insert an ordinary twist drill in a holder or socket _S_, Fig. 40, which is inserted in the tailstock spindle in place of the center. The drill is then fed through the work by turning the handle _n_ and feeding the spindle outward as shown by the arrow. Before beginning to drill, it is well to turn a conical spot or center for the drill point so the latter will start true. This is of
PREV.   NEXT  
|<   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55  
56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   >>   >|  



Top keywords:

finished

 

center

 
surfaces
 

turned

 

Drilling

 

Illustration

 

released

 
boring
 

turning

 

casting


spindle

 

dotted

 

surface

 
springing
 
spring
 

permit

 

beginning

 
taking
 

Before

 

finishing


outward
 

relation

 
prevented
 

locating

 

roughing

 

conical

 

tightly

 

Importance

 

socket

 
inserted

tailstock

 

holder

 

method

 
ordinary
 

drilling

 
distortion
 
feeding
 

Setting

 

insert

 
Diagram

Illustrating

 
Reference
 
handle
 

Reaming

 

Turned

 

Surfaces

 

natural

 
finally
 
diameter
 

making