FREE BOOKS

Author's List




PREV.   NEXT  
|<   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68  
69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   >>   >|  
inciples governing their shape which apply generally; so in what follows we shall not attempt to explain in detail just what the form of each tool used on the lathe should be, as it is more important to understand how the cutting action of the tool and its efficiency is affected when it is improperly ground. When the principle is understood, the grinding of tools of various types and shapes is comparatively easy. [Illustration: Fig. 11. Plan View of Lathe Turning and Threading Tools] =Shape or Contour of Cutting Edge.=--In the first place we shall consider the shape or contour of the cutting edge of the tool as viewed from the top, and then take up the question of clearance and slope, the different elements being considered separately to avoid confusion. The contour of the cutting edge depends primarily upon the purpose for which the tool is intended. For example, the tool _A_, in Fig. 11, where a plan view of a number of different lathe tools is shown, has a very different shape from that of, say, tool _D_, as the first tool is used for rough turning, while tool _D_ is intended for cutting grooves or severing a turned part. Similarly, tool _E_ is V-shaped because it is used for cutting V-threads. Tools _A_, _B_ and _C_, however, are regular turning tools; that is, they are all intended for turning plain cylindrical surfaces, but the contour of the cutting edges varies considerably, as shown. In this case it is the characteristics of the work and the cut that are the factors which determine the shape. To illustrate, tool _A_ is of a shape suitable for rough-turning large and rigid work, while tool _B_ is adapted for smaller and more flexible parts. The first tool is well shaped for roughing because experiments have shown that a cutting edge of a large radius is capable of higher cutting speed than could be used with a tool like _B_, which has a smaller point. This increase in the cutting speed is due to the fact that the tool _A_ removes a thinner chip for a given feed than tool _B_; therefore, the speed may be increased without injuring the cutting edge to the same extent. If, however, tool _A_ were to be used for turning a long and flexible part, chattering might result; consequently, a tool _B_ having a point with a smaller radius would be preferable, if not absolutely necessary. The character of the work also affects the shape of tools. The tool shown at _C_ is used for taking light finishing cuts with a wide f
PREV.   NEXT  
|<   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68  
69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   >>   >|  



Top keywords:

cutting

 

turning

 

smaller

 

intended

 
contour
 

radius

 

shaped

 

flexible

 

taking

 

characteristics


factors

 

determine

 

suitable

 
illustrate
 
finishing
 
cylindrical
 

surfaces

 

regular

 

considerably

 

varies


adapted

 

roughing

 

increased

 
injuring
 

preferable

 

extent

 
result
 
chattering
 

thinner

 
removes

capable
 

character

 
experiments
 

affects

 
higher
 

increase

 

absolutely

 
number
 

principle

 

understood


ground

 
improperly
 

efficiency

 

affected

 
grinding
 

Illustration

 

shapes

 

comparatively

 
action
 

explain