FREE BOOKS

Author's List




PREV.   NEXT  
|<   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62  
63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   >>   >|  
ining of aluminum and aluminum alloys is caused by the clogging of the chips, especially when using such tools as counterbores and milling cutters. This difficulty can be avoided largely by using the right kind of cutting lubricant. Soap-water and kerosene are commonly employed. The latter enables a fine finish to be obtained, provided the cutting tool is properly ground. The following information on this subject represents the experience of the Brown-Lipe Gear Co., where aluminum parts are machined in large quantities: For finishing bored holes, a bar equipped with cutters has been found more practicable than reamers. The cutters used for machining 4-inch holes have a clearance of from 20 to 22 degrees and no rake or slope on the front faces against which the chips bear. The roughing cutters for this work have a rather sharp nose, being ground on the point to a radius of about 3/32 inch, but for securing a smooth surface, the finishing tools are rounded to a radius of about 3/4 inch. The cutting speed, as well as the feed, for machining aluminum is from 50 to 60 per cent faster than the speeds and feeds for cast iron. The lubricant used by this company is composed of one part "aqualine" and 20 parts water. This lubricant not only gives a smooth finish but preserves a keen cutting edge and enables tools to be used much longer without grinding. Formerly, a lubricant composed of one part of high-grade lard oil and one part of kerosene was used. This mixture costs approximately 30 cents per gallon, whereas the aqualine and water mixture now being used costs less than 4 cents per gallon, and has proved more effective than the lubricant formerly employed. CHAPTER II LATHE TURNING TOOLS AND CUTTING SPEEDS Notwithstanding the fact that a great variety of work can be done in the lathe, the number of turning tools required is comparatively small. Fig. 1 shows the forms of tools that are used principally, and typical examples of the application of these various tools are indicated in Fig. 2. The reference letters used in these two illustrations correspond for tools of the same type, and both views should be referred to in connection with the following description. =Turning Tools for General Work.=--The tool shown at _A_ is the form generally used for rough turning, that is for taking deep cuts when considerable metal has to be removed. At _B_ a tool of the same type is shown, having a bent end which enables it
PREV.   NEXT  
|<   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62  
63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   >>   >|  



Top keywords:

lubricant

 

cutters

 

cutting

 

aluminum

 
enables
 

finishing

 

machining

 

gallon

 

composed

 

aqualine


mixture

 

radius

 

turning

 
smooth
 
ground
 
kerosene
 

employed

 

finish

 

variety

 

number


comparatively

 

principally

 

typical

 
required
 

CUTTING

 

proved

 
milling
 
counterbores
 

approximately

 
effective

examples
 

SPEEDS

 
TURNING
 

CHAPTER

 
Notwithstanding
 

clogging

 

generally

 
taking
 

considerable

 

removed


General

 
letters
 

illustrations

 

reference

 
correspond
 

caused

 

connection

 

description

 
Turning
 

referred