FREE BOOKS

Author's List




PREV.   NEXT  
|<   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81  
82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106   >>   >|  
r turpentine is sometimes used when boring or reaming. If babbitt is bored dry, balls of metal tend to form on the tool point and score the work. Milk is generally considered the best lubricant for machining copper. A mixture of lard oil and turpentine is also used for copper. For aluminum, the following lubricants can be used: Kerosene, a mixture of kerosene and gasoline, soap-water, or "aqualine" one part, water 20 parts. =Lard Oil as a Cutting Lubricant.=--After being used for a considerable time, lard oil seems to lose some of its good qualities as a cooling compound. There are several reasons for this: Some manufacturers use the same oil over and over again on different materials, such as brass, steel, etc. This is objectionable, for when lard oil has been used on brass it is practically impossible to get the fine dust separated from it in a centrifugal separator. When this impure oil is used on steel, especially where high-speed steels are employed, it does not give satisfactory results, owing to the fact that when the cutting tool becomes dull, the small brass particles "freeze" to the cutting tool and thus produce rough work. The best results are obtained from lard oil by keeping it thin, and by using it on the same materials--that is, not transferring the oil from a machine in which brass is being cut to one where it would be employed on steel. If the oil is always used on the same class of material, it will not lose any of its good qualities. Prime lard oil is nearly colorless, having a pale yellow or greenish tinge. The solidifying point and other characteristics of the oil depend upon the temperature at which it was expressed, winter-pressed lard oil containing less solid constituents of the lard than that expressed in warm weather. The specific gravity should not exceed 0.916; it is sometimes increased by adulterants, such as cotton-seed and maize oils. CHAPTER III TAPER TURNING--SPECIAL OPERATIONS--FITTING It is often necessary, in connection with lathe work, to turn parts tapering instead of straight or cylindrical. If the work is mounted between the centers, one method of turning a taper is to set the tailstock center out of alignment with the headstock center. When both of these centers are in line, the movement of the tool is parallel to the axis of the work and, consequently, a cylindrical surface is produced; but if the tailstock _h_{1}_ is set out of alignment, as shown in Fig. 1,
PREV.   NEXT  
|<   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81  
82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106   >>   >|  



Top keywords:

cylindrical

 

expressed

 
results
 

materials

 

employed

 

cutting

 

qualities

 
mixture
 

alignment

 

turpentine


centers

 

center

 

copper

 
tailstock
 
temperature
 

surface

 

constituents

 
winter
 

pressed

 

produced


characteristics
 

colorless

 
material
 

depend

 

solidifying

 

yellow

 

greenish

 

exceed

 

FITTING

 
OPERATIONS

TURNING

 

SPECIAL

 

connection

 
straight
 

method

 
mounted
 
turning
 

tapering

 

CHAPTER

 
increased

parallel

 
specific
 
gravity
 

adulterants

 

movement

 

headstock

 

cotton

 
weather
 
aqualine
 

Kerosene