FREE BOOKS

Author's List




PREV.   NEXT  
|<   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76  
77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   >>   >|  
om 150 to 200 feet per minute; for hard bronze, from 35 to 80 feet per minute, the speed depending upon the composition of the alloy. While these speeds correspond closely to general practice, they can be exceeded for many machining operations. The most economical speeds for a given feed and depth of cut, as determined by the experiments conducted by Mr. F. W. Taylor, are given in the table, "Cutting Speeds and Feeds for Turning Tools." The speeds given in this table represent results obtained with tools made of a good grade of high-speed steel properly heat-treated and correctly ground. It will be noted that the cutting speed is much slower for cast iron than for steel. Cast iron is cut with less pressure or resistance than soft steel, but the slower speed required for cast iron is probably due to the fact that the pressure of the chip is concentrated closer to the cutting edge, combined with the fact that cast iron wears the tool faster than steel. The speeds given are higher than those ordinarily used, and, in many cases, a slower rate would be necessary to prevent chattering or because of some other limiting condition. =Factors which limit the Cutting Speed.=--It is the durability of the turning tool or the length of time that it will turn effectively without grinding, that limits the cutting speed; and the hardness of the metal being turned combined with the quality of the tool are the two factors which largely govern the time that a tool can be used before grinding is necessary. The cutting speed for very soft steel or cast iron can be three or four times faster than the speed for hard steel or hard castings, but whether the material is hard or soft, the kind and quality of the tool used must also be considered, as the speed for a tool made of ordinary carbon steel will have to be much slower than for a tool made of modern "high-speed" steel. When the cutting speed is too high, even though high-speed steel is used, the point of the tool is softened to such an extent by the heat resulting from the pressure and friction of the chip, that the cutting edge is ruined in too short a time. On the other hand, when the speed is too slow, the heat generated is so slight as to have little effect and the tool point is dulled by being slowly worn or ground away by the action of the chip. While a tool operating at such a low speed can be used a comparatively long time without re-sharpening, this advantage is more than off
PREV.   NEXT  
|<   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76  
77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   >>   >|  



Top keywords:

cutting

 

slower

 

speeds

 
pressure
 

grinding

 

ground

 

quality

 
combined
 

faster

 

minute


Cutting

 

material

 
castings
 

considered

 

modern

 
carbon
 

ordinary

 

hardness

 

turned

 

limits


bronze
 

effectively

 
factors
 

largely

 

govern

 

softened

 

action

 

operating

 
slowly
 

effect


dulled
 

advantage

 

sharpening

 

comparatively

 
slight
 

extent

 

resulting

 

friction

 
ruined
 

generated


turning

 

economical

 

experiments

 

determined

 
operations
 

machining

 

resistance

 

practice

 
exceeded
 

conducted