FREE BOOKS

Author's List




PREV.   NEXT  
|<   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82  
83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   >>  
opes cannot be brought to a greater perfection, because of that refraction, and of that very refrangibility, which at the same time that they bring objects nearer to us, scatter too much the elementary rays. He has calculated in these glasses the proportion of the scattering of the red and of the blue rays; and proceeding so far as to demonstrate things which were not supposed even to exist, he examines the inequalities which arise from the shape or figure of the glass, and that which arises from the refrangibility. He finds that the object glass of the telescope being convex on one side and flat on the other, in case the flat side be turned towards the object, the error which arises from the construction and position of the glass is above five thousand times less than the error which arises from the refrangibility; and, therefore, that the shape or figure of the glasses is not the cause why telescopes cannot be carried to a greater perfection, but arises wholly from the nature of light. For this reason he invented a telescope, which discovers objects by reflection, and not by refraction. Telescopes of this new kind are very hard to make, and their use is not easy; but, according to the English, a reflective telescope of but five feet has the same effect as another of a hundred feet in length. LETTER XVII.--ON INFINITES IN GEOMETRY, AND SIR ISAAC NEWTON'S CHRONOLOGY The labyrinth and abyss of infinity is also a new course Sir Isaac Newton has gone through, and we are obliged to him for the clue, by whose assistance we are enabled to trace its various windings. Descartes got the start of him also in this astonishing invention. He advanced with mighty steps in his geometry, and was arrived at the very borders of infinity, but went no farther. Dr. Wallis, about the middle of the last century, was the first who reduced a fraction by a perpetual division to an infinite series. The Lord Brouncker employed this series to square the hyperbola. Mercator published a demonstration of this quadrature; much about which time Sir Isaac Newton, being then twenty-three years of age, had invented a general method, to perform on all geometrical curves what had just before been tried on the hyperbola. It is to this method of subjecting everywhere infinity to algebraical calculations, that the name is given of differential calculations or of fluxions and integral calculation. It is the art of numbering and measurin
PREV.   NEXT  
|<   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82  
83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   >>  



Top keywords:

arises

 

telescope

 

infinity

 

refrangibility

 

object

 
figure
 

Newton

 

series

 

invented

 

method


hyperbola
 

objects

 

refraction

 

calculations

 

glasses

 

greater

 

perfection

 
mighty
 

integral

 

Wallis


farther

 

calculation

 

arrived

 

borders

 

geometry

 

assistance

 
measurin
 
numbering
 

obliged

 
enabled

astonishing

 

invention

 

Descartes

 
windings
 

advanced

 

subjecting

 

twenty

 

published

 
demonstration
 

quadrature


perform

 

geometrical

 

curves

 

Mercator

 

reduced

 

century

 
differential
 
middle
 

general

 

fraction