FREE BOOKS

Author's List




PREV.   NEXT  
|<   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45  
46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   >>   >|  
oil lying _between_ the two coils with which it is in series. The phase of the heavy line currents was shown in Fig. 4 to lie between the other two. Therefore, in the armature in Fig. 6 (or 8) there will be six phases, while in Fig. 5 there are only three, the number of leads (three) remaining the same as before. This is the fundamental principle of this ingenious invention. To have six phases in Fig. 5 would require six leads, but in Fig. 6 precisely the same result is obtained with only three leads. In the same way the three leads in Fig. 6 might again be combined and passed around the armature again, and so on forming still more phases, without increasing the number of leads. Figs. 7 and 8 compound with 5 and 6 and show the same system for a Gramme ring instead of a cylinder armature. As was stated in the early part of this description, the main object in a rotary current motor is to have a magnetic field which is as nearly constant in intensity as possible, and which changes only its position, that is, its axis. But in Fig. 4 it was shown that the current I (in dotted lines) is greater than the others (about as 1.4 to 1 for a phase difference of 90 degrees). If therefore the coils in Fig. 6 or 8 were all alike, the magnetism generated by the heavy line coils would be greater than that generated by the others, and would therefore produce very undesirable pulsations in the magnetic fields; but as the magnetism depends on the ampere turns, it is necessary merely to have correspondingly fewer turns on these coils, as compared with the others. This is shown diagrammatically in Figs. 6 and 8, in which the heavy line coils have less windings than the others. In practice it is not always possible to obtain the exact ratio of 1 to 1.4, for instance, but even if this ratio is obtained only approximately, it nevertheless reduces the pulsations very materially below what they would be with half the number of phases. It is therefore not necessary in practice to have more than an approximation to the exact conditions. [Illustration: FIG. 9.] [Illustration: FIG. 10.] [Illustration: FIG. 11.] [Illustration: FIG. 12.] Fig. 9 shows a multiple phase armature having double the number of phases as Fig. 1, and would according to the old system, therefore, require eight leads. Fig. 10 shows the new system with the same number of phases as in Fig. 9, but requiring only four leads instead of eight. Figs. 11 and 12 correspond
PREV.   NEXT  
|<   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45  
46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   >>   >|  



Top keywords:
phases
 

number

 

armature

 

Illustration

 
system
 
practice
 

current

 
magnetic
 

magnetism

 

pulsations


generated

 

require

 
obtained
 

greater

 
correspondingly
 
compared
 

depends

 

fields

 
produce
 

ampere


undesirable

 

multiple

 

conditions

 
approximation
 

double

 
correspond
 

requiring

 

obtain

 

instance

 

windings


materially

 

reduces

 
approximately
 

diagrammatically

 

result

 

precisely

 
ingenious
 
invention
 

combined

 

forming


passed

 

principle

 

fundamental

 

currents

 
series
 

Therefore

 
remaining
 

increasing

 
position
 

intensity