FREE BOOKS

Author's List




PREV.   NEXT  
|<   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93  
94   95   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111   112   113   >>  
which is ethyl-ethoxol. Acetone would admit of a similar explanation. Finally the assumption of dissimilarity in character of the hydrogen atoms in the water molecule possibly may lead to the discovery of a number of unlocked for isomerides. Thus, by appropriate methods, it ought to become possible to introduce the alkyl groups solely into the hydroxyl group (instead of into the place of the loosely attached H-atom). In that case chemists might arrive at an isomeride of methyl alcohol of the formula H.(OCH_{3}), or at methoxyl hydride, a compound not alcoholic in character, or at a nitroxyl hydride, H(ONO_{2}), not of an acidic nature. Oxychlorides would be classed with this latter category, that is, they would be looked on as water in which the free hydrogen atom has been substituted by the metal, and the hydrogen atom of the hydroxyl by chlorine. This example, indeed, furnishes a most characteristic illustration of our theory. In the case just now assumed we arrive at the oxychloride; when, however, the metal and chlorine change places in the water molecule, the isomeric hypochlorous salts are the result. It is true that such cases of isomerism are as yet unknown, but we do know that certain metals, in our present state of knowledge, yield oxychlorides only, while others only form hypochlorous salts. This condition also explains why hypochlorites still possesses the bleaching power of chlorine, while the same is not true of oxychlorides. However, it seems needless to multiply examples in further illustration of the theory. * * * * * THE FORMATION OF STARCH IN LEAVES. In 1750, Bonnet, a Genevese naturalist, remarked that leaves immersed in water became covered in the sun with small bubbles of a gas that he compared to small pearls. In 1772, Priestley, after discovering that the sojourn of animals in a confined atmosphere renders it irrespirable, investigated the influence of plants placed in the same conditions, and he relates, in these words, the discovery that he made on the subject: "I put a sprig of mint in a quantity of air in which a candle had ceased to burn, and I found that, ten days later, another candle was able to burn therein perfectly well." It is to him, therefore, that is due the honor of having ascertained that plants exert an action upon the atmosphere contrary to that exerted by animals. Priestley, however, was not completely master of his fine ex
PREV.   NEXT  
|<   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93  
94   95   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111   112   113   >>  



Top keywords:

hydrogen

 

chlorine

 

illustration

 

hydride

 

arrive

 

atmosphere

 

animals

 

Priestley

 

plants

 

candle


hypochlorous
 

oxychlorides

 

theory

 
hydroxyl
 
discovery
 
character
 

molecule

 
compared
 

dissimilarity

 

bubbles


covered

 

pearls

 

assumption

 

explanation

 

renders

 

irrespirable

 

investigated

 

confined

 

Finally

 

discovering


sojourn
 
leaves
 
multiply
 

examples

 

needless

 

However

 

FORMATION

 

Genevese

 
naturalist
 
remarked

influence

 

Bonnet

 
STARCH
 

LEAVES

 
immersed
 

perfectly

 
ascertained
 

master

 

completely

 
exerted