FREE BOOKS

Author's List




PREV.   NEXT  
|<   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94  
95   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111   112   113   >>  
periment; he was ignorant of the fact, notably, that the oxygen is disengaged by plants only as long as they are under the influence of light. This important discovery is due to Ingenhouse. Finally, it was Sennebier who showed that oxygen is obtained from leaves only when carbonic acid has been introduced into the atmosphere where they remain. Later on, T. De Saussure and Boussingault inquired into the conditions most favorable to assimilation. Boussingault demonstrated, in addition, that the volume of carbonic acid absorbed was equal to that of the oxygen emitted. Now we know, through a common chemical experiment, that carbonic acid contains its own volume of oxygen. It was supposed, then, that carbonic acid was decomposed by sunlight into carbon and oxygen. Things, however, do not proceed so simply. In fact, it is certain that, before the complete decomposition into carbon and oxygen, there comes a moment in which there is oxygen on the one hand and oxide of carbon (CO_{2} = O + CO) on the other. The decomposition, having reached this point, can go no further, for the oxide of carbon is indecomposable by leaves, as the following experiment proves. If we put phosphorus and some leaves into an inert gas, such as hydrogen, we in the first place observe the formation of the white fumes of phosphoric acid due to the oxidation of the phosphorus by the oxygen contained in the leaves. This phosphoric acid dissolves in the water of the test glass and the latter becomes transparent again. If, now, we introduce some oxide of carbon, we remark in the sun no formation of phosphoric acid, and this proves that there is no emission of oxygen. [Illustration: DEMONSTRATION THAT STARCH IS FORMED IN LEAVES ONLY AT THE POINTS TOUCHED BY LIGHT.] This latter hypothesis of the decomposition of carbonic acid into a half volume of vapor of carbon and one volume of oxygen being rejected, the idea occurred to consider the carbonic acid in a hydrated state and to write it CO_{2}HO. In this case, we should have by the action of chlorophyl: 2CO_{2}HO (carbonic acid) = 4O (oxygen) + C_{2}H_{2}O_{2} (methylic aldehyde). This aldehyde is a body that can be polymerized, that is to say, is capable of combining with itself a certain number of times to form complexer bodies, especially glucose. This formation of a sugar by means of methylic aldehyde is not a simple hypothesis, since, on the one hand, Mr. Loew has executed it by starting fr
PREV.   NEXT  
|<   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94  
95   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111   112   113   >>  



Top keywords:

oxygen

 

carbonic

 
carbon
 

leaves

 

volume

 

aldehyde

 

formation

 

decomposition

 

phosphoric

 
methylic

Boussingault

 
phosphorus
 
proves
 
hypothesis
 
experiment
 

LEAVES

 

STARCH

 

FORMED

 

DEMONSTRATION

 

introduce


dissolves

 

contained

 

oxidation

 

transparent

 

remark

 

emission

 

Illustration

 

number

 
complexer
 

combining


polymerized

 

capable

 

bodies

 

executed

 
starting
 
glucose
 

simple

 
rejected
 
occurred
 

POINTS


TOUCHED
 
hydrated
 

chlorophyl

 

action

 

observe

 

Saussure

 

remain

 

introduced

 

atmosphere

 

inquired