FREE BOOKS

Author's List




PREV.   NEXT  
|<   26   27   28   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50  
51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   >>   >|  
tant, _t_, Fig. 1, which regulates the number of current waves which can be transmitted through it per second. This is the time the current takes to rise from zero to its working maximum, and the time it takes to fall from this maximum to zero again, shown by the shaded portions of the figure; the duration of the working current being immaterial, and shown by the unshaded portion. The most rapid form of quick telegraphy requires about 150 currents per second, currents each of which must rise and fall in 1/150 of a second, but for ordinary telephone speaking we must have about 1,500 currents per second, or the time which each current rises from zero to its maximum intensity must not exceed 1/3000 part of a second. The time constant of a telephone circuit should therefore not be less than 0.0003 second. Resistance alone does not affect the time constant. It diminishes the intensity or strength of the currents only; but resistance, combined with electromagnetic inertia and with capacity, has a serious retarding effect on the rate of rise and fall of the currents. They increase the time constant and introduce a slowness which may be called retardance, for they diminish the rate at which currents can be transmitted. Now the retardance due to electromagnetic inertia increases directly with the amount of electromagnetic inertia present, but it diminishes with the amount of resistance of the conductor. It is expressed by the ratio L/R while that due to capacity increases directly, both with the capacity and with the resistance, and it is expressed by the product, K R. The whole retardance, and, therefore, the speed of working the circuit or the clearness of speech, is given, by the equation L --- + K R = t R or L + K R squared = R t Now in telegraphy we are not able altogether to eliminate L, but we can counteract it, and if we can make Rt = 0, then L = - K R squared which is the principle of the shunted condenser that has been introduced with such signal success in our post office service, and has virtually doubled the carrying capacity of our wires. K R = t This is done in telephony, and hence we obtain the law of retardance, or the law by which we can calculate the distance to which speech is possible. All my calculations for the London and Paris line were based on this law, which experience has shown it to be
PREV.   NEXT  
|<   26   27   28   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50  
51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   >>   >|  



Top keywords:

currents

 

retardance

 
current
 
capacity
 
electromagnetic
 

resistance

 

constant

 

inertia

 

maximum

 

working


circuit

 

squared

 

speech

 

intensity

 

expressed

 
directly
 

transmitted

 
diminishes
 

telephone

 
telegraphy

increases

 

amount

 
clearness
 

London

 

altogether

 

experience

 

equation

 

product

 

condenser

 

carrying


doubled

 
calculations
 

service

 

virtually

 

telephony

 

distance

 

calculate

 

obtain

 

office

 

principle


counteract

 

shunted

 

signal

 

success

 

introduced

 

eliminate

 
strength
 
portion
 
requires
 

ordinary