FREE BOOKS

Author's List




PREV.   NEXT  
|<   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91  
92   93   94   95   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111   112   113   >>  
_{2}O. Both the theory and the practice of substitution enable us to further prove the presence of two hydrogen atoms in a water molecule. Decomposing water by sodium, only one-half of the hydrogen contained is eliminated, the other half, together with all of the oxygen, uniting with the metal to form sodium hydroxide, H_{2}O + Na = H + NaHO. Doubling the amount of sodium does not alter the result, for decomposition according to the equation H_{2}O + 2Na = H_{2} + Na_{2}O never happens. Introducing the ethyl group into the water molecule and reacting under appropriate conditions with ethyl iodide upon water, the ethyl group displaces one atom of hydrogen, and, uniting with the hydroxyl residue, forms ethyl alcohol, thus: H_{2}O + C_{2}H_{5}I = C_{2}H_{5}OH + HI. Halogens do not act directly on water, hence we may not properly speak of halogen substitution products. By the action, however, of phosphorus haloids on water an analogous splitting of the water molecule is again observed, one-half of the hydrogen uniting with the halogen to form an acid, the hydroxyl residue then forming a phosphorus compound, thus: PCl_{3} + 3H_{2}O = 3HCl + P(OH)_{3}. Now these examples, which might readily be multiplied, prove not only the presence of _two_ hydrogen atoms in the water molecule, but they further demonstrate that these two atoms _differ from each other_ in respect to their form of combination and power of substitution. The two hydrogen atoms are certainly not of equal value, whence it follows that the accepted formula for water: H > O H or as preferred by some: H-O-H, is not in conformity with established facts. Expressed as here shown, both hydrogen atoms are assigned equal values, when in fact only _one of the atoms is united to oxygen in form of hydroxyl_, while the second is loosely attached to the univalent hydroxyl group. Viewed in this light, water then is decomposed according to the equation: H_{2}O = H + (OH), never in this manner: H_{2}O = 2H + O. Hence, water must be considered as a combination of one hydrogen atom with one molecule of hydroxyl, expressed by the formula H(OH), and it is this atom of hydrogen _not_ united to oxygen which is eliminated in the generation of oxygen or substituted by metals and alkyl groups. The hydrogen in the hydroxyl group cannot be substituted, excepting it be the entire group as such; this is proved by the action of the halogens
PREV.   NEXT  
|<   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91  
92   93   94   95   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111   112   113   >>  



Top keywords:

hydrogen

 

hydroxyl

 

molecule

 

oxygen

 

substitution

 

uniting

 

sodium

 

action

 

phosphorus

 

residue


substituted
 

combination

 

formula

 
united
 
halogen
 
eliminated
 

presence

 
equation
 

preferred

 

enable


conformity

 

Expressed

 

established

 

respect

 

contained

 

Decomposing

 

assigned

 

accepted

 

metals

 

generation


expressed
 
considered
 
groups
 

proved

 

halogens

 

entire

 

excepting

 

loosely

 
practice
 
differ

attached

 

univalent

 
decomposed
 

manner

 
theory
 

Viewed

 
values
 

directly

 

Halogens

 
properly