FREE BOOKS

Author's List




PREV.   NEXT  
|<   28   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52  
53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   >>   >|  
lem of distribution, of which the partition of a number is a particular case. He introduced the method of symmetric functions and the method of differential operators, applying both methods to the two important subdivisions, the theory of composition and the theory of partition. He introduced the notion of the separation of a partition, and extended all the results so as to include multipartite as well as unipartite numbers. He showed how to introduce zero and negative numbers, unipartite and multipartite, into the general theory; he extended Sylvester's graphical method to three dimensions; and finally, 1898, he invented the "Partition Analysis" and applied it to the solution of novel questions in arithmetic and algebra. An important paper by G. B. Mathews, which reduces the problem of compound partition to that of simple partition, should also be noticed. This is the problem which was known to Euler and his contemporaries as "The Problem of the Virgins," or "the Rule of Ceres"; it is only now, nearly 200 years later, that it has been solved. Fundamental problem. The most important problem of combinatorial analysis is connected with the distribution of objects into classes. A number n may be regarded as enumerating n similar objects; it is then said to be unipartite. On the other hand, if the objects be not all similar they cannot be effectively enumerated by a single integer; we require a succession of integers. If the objects be p in number of one kind, q of a second kind, r of a third, &c., the enumeration is given by the succession pqr... which is termed a multipartite number, and written, ______ pqr..., where p + q + r + ... = n. If the order of magnitude of the numbers p, q, r, ... is immaterial, it is usual to write them in descending order of magnitude, and the succession may then be termed a partition of the number n, and is written (pqr...). The succession of integers thus has a twofold signification: (i.) as a multipartite number it may enumerate objects of different kinds; (ii.) it may be viewed as a partitionment into separate parts of a unipartite number. We may say either that the objects are represented by the multipartite number ______ pqr..., or that they are defined by the partition (pqr...) of the unipartite number n. Similarly the classes into which they are distributed may be m in number all similar; or they may be p1 of one kind, q1 of a second, r1 of a third, &c., wher
PREV.   NEXT  
|<   28   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52  
53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   >>   >|  



Top keywords:

number

 

partition

 
objects
 

unipartite

 

multipartite

 

succession

 

problem

 
numbers
 

important

 

theory


method

 

similar

 

integers

 
distribution
 
termed
 

magnitude

 

introduced

 
written
 

extended

 

classes


enumerating
 

regarded

 
integer
 

single

 

enumerated

 

effectively

 

require

 

represented

 

partitionment

 
separate

defined

 

Similarly

 

distributed

 
viewed
 

connected

 
immaterial
 
descending
 

enumerate

 

twofold

 
signification

enumeration

 
Problem
 
general
 

Sylvester

 

negative

 

showed

 

introduce

 
graphical
 
Partition
 

Analysis