FREE BOOKS

Author's List




PREV.   NEXT  
|<   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61  
62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   >>   >|  
. + x_n-1)^[xi]n, and to obtain the condensed form we have to evaluate the co-axial minors of the invertebrate determinant-- | 0 1 1 ... 1 | | 1 0 1 ... 1 | | 1 1 0 ... 1 | | . . . ... . | | 1 1 1 ... 0 | The minors of the 1st, 2nd, 3rd ... nth orders have respectively the values 0 -1 +2 ... (-)^(n-1)(n - 1), therefore the generating function is 1 --------------------------------------------------------------------------------------; 1 - [Sigma]x1x2 - 2[Sigma]x1x2x3 - ... - s[Sigma]x1x2...x_s+1 - ... - (n - 1)x1x2...xn or writing (x - x1)(x - x2)...(x - xn) = x^n - a1x^(n-1) + a2x^(n-2) - ..., this is 1 ------------------------------------- 1 - a2 - 2a3 - 3a4 - ... - (n - 1)a_n Again, consider the general problem of "derangements." We have to find the number of permutations such that exactly _m_ of the letters are in places they originally occupied. We have the particular redundant product (ax1 + x2 + ... + xn)^[xi]^1 (x1 + ax2 + ... + xn)^[xi]^2 ... (x1 + x2 + ... + ax_n)^[xi]n, in which the sought number is the coefficient of a^m x1^[xi]^1 x2^[xi]^2...xn^[xi]n. The true generating function is derived from the determinant | a 1 1 1 . . . | | 1 a 1 1 . . . | | 1 1 a 1 . . . | | 1 1 1 a . . . | | . . . . | | . . . . | and has the form 1 ------------------------------------------------------------------------------------------. 1 - a[Sigma]x1 + (a - 1)(a + 1)[Sigma]x1x2 - ... + (-)^n(a - 1)^(n-1)(a + n - 1)x1x2... xn It is clear that a large class of problems in permutations can be solved in a similar manner, viz. by giving special values to the elements of the determinant of the matrix. The redundant product leads uniquely to the real generating function, but the latter has generally more than one representation as a redundant product, in the cases in which it is representable at all. For the existence of a redundant form, the coefficients of x1, x2, ... x1x2 ... in the denominator of the real generating function must satisfy 2^n - n^2 + n - 2 conditions, and assuming this to be the case, a redundant form can be constructed which involves n - 1 undetermined quantities. We are thus able to pass from any parti
PREV.   NEXT  
|<   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61  
62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   >>   >|  



Top keywords:

redundant

 

generating

 
function
 

product

 

determinant

 

number

 

values

 
minors
 

permutations


problems

 

generally

 

similar

 

special

 
solved
 
manner
 

elements

 

matrix

 
giving

uniquely

 

constructed

 
involves
 

assuming

 
conditions
 

undetermined

 

quantities

 

satisfy

 

representation


representable

 

coefficients

 
denominator
 

existence

 

occupied

 

writing

 
x1x2x3
 

orders

 
evaluate

condensed
 

invertebrate

 

general

 
sought
 

coefficient

 
derived
 
obtain
 

originally

 

derangements


problem

 

letters

 
places