FREE BOOKS

Author's List




PREV.   NEXT  
|<   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55  
56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   >>   >|  
h_(q1)h_(r1) ... is equal to the coefficient of symmetric function (p1q1r1 ...) in the development of the product h_p.h_q.h_r...." The problem of Case I. may be considered when the distributions are subject to various restrictions. If the restriction be to the effect that an aggregate of similar parcels is not to contain more than one object of a kind, we have clearly to deal with the elementary symmetric functions a1, a2, a3, ... or (1), (1^2), (1^3), ... in lieu of the quantities h1, h2, h3, ... The distribution function has then the value a_(p1)a_(q1)a_(r1)... or (1^p1) (1^q1) (1^r1) ..., and by interchange of object and parcel we arrive at the well-known theorem of symmetry in symmetric functions, which states that the coefficient of symmetric function (pqr ...) in the development of the product ap1aq1ar1 ... in a series of monomial symmetric functions, is equal to the coefficient of the function (p1q1r1 ...) in the similar development of the product a_p.a_q.a_r.... The general result of Case I. may be further analysed with important consequences. Write X1 = (1)x1, X2 = (2)x2 + (1^2)x1^2, X3 = (3)x3 + (21)x2x1 + (1^3){x1}^3 . . . . . and generally X_s = [Sigma]([lambda][mu][nu] ...)x_[lambda]x_[mu]x_[nu] ... the summation being in regard to every partition of s. Consider the result of the multiplication-- X_p1 X_q1 X_r1 ... = [Sigma]P(x_s1)^[sigma]1 (x_s2)^[sigma]2 (x_s3)^[sigma]3 ... To determine the nature of the symmetric function P a few definitions are necessary. _Definition I._--Of a number n take any partition ([lambda]1[lambda]2[lambda]3 ... [lambda]s) and separate it into component partitions thus:-- ([lambda]1[lambda]2) ([lambda]3[lambda]4[lambda]5) ([lambda]6) ... in any manner. This may be termed a _separation_ of the partition, the numbers occurring in the separation being identical with those which occur in the partition. In the theory of symmetric functions the separation denotes the product of symmetric functions-- [Sigma] [alpha]^[lambda]1 [beta]^[lambda]2 [Sigma][alpha]^[lambda]3 [beta]^[lambda]4 [gamma]^[lambda]5 [Sigma][alpha]^[lambda]6 ... The portions ([lambda]1[lambda]2), ([lambda]3[lambda]4[lambda]5), ([lambda]6)... are termed _separates_, and if [lambda]1 + [lambda]2 = p1, [lambda]3 + [lambda]4 + [lambda]5 = q1, [lambda]6 = r1... be in descending order of magnitude,
PREV.   NEXT  
|<   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55  
56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   >>   >|  



Top keywords:

lambda

 

symmetric

 
functions
 

function

 

product

 

partition

 

separation

 
coefficient
 

development

 

termed


object

 

p1q1r1

 

result

 
similar
 
nature
 

determine

 

definitions

 
multiplication
 

Consider

 

summation


regard
 

manner

 
theory
 

denotes

 

identical

 

portions

 

magnitude

 

descending

 

separates

 
occurring

numbers

 

separate

 

number

 
generally
 

partitions

 
component
 
Definition
 

symmetry

 

elementary

 
quantities

subject

 
distributions
 
problem
 

considered

 

restrictions

 

parcels

 

aggregate

 
restriction
 
effect
 

distribution