FREE BOOKS

Author's List




PREV.   NEXT  
|<   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57  
58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   >>   >|  
2^[sigma]2 x_s3^[sigma]3 ... + ... This extensive theorem of algebraic reciprocity includes many known theorems of symmetry in the theory of Symmetric Functions. The whole of the theory has been extended to include symmetric functions symbolized by partitions which contain as well zero and negative parts. Case II. 2. _The Compositions of Multipartite Numbers. Parcels denoted by (I^m)._--There are here no similarities between the parcels. Let ([pi]1 [pi]2 [pi]3) be a partition of m. (p1^[pi]1 p2^[pi]2 p3^[pi]3) a partition of n. Of the whole number of distributions of the n objects, there will be a certain number such that n1 parcels each contain p1 objects, and in general [pi]s parcels each contain ps objects, where s = 1, 2, 3, ... Consider the product h_p1^[pi]1 h_p2^[pi]2 h_p3^[pi]3 ... which can be permuted in m! / ([pi]1![pi]2![pi]3! ...) ways. For each of these ways h_p1^[pi]1 h_p2^[pi]2 h_p3^[pi]3 ... will be a distribution function for distributions of the specified type. Hence, regarding all the permutations, the distribution function is m! ------------------------ h_p1^[pi]1 h_p2^[pi]2 h_p3^[pi]3 ... [pi]1! [pi]2! [pi]3! ... and regarding, as well, all the partitions of n into exactly m parts, the desired distribution function is m! [Sigma] ------------------------ h_p1^[pi]1 h_p2^[pi]2 h_p3^[pi]3 ... [pi]1! [pi]2! [pi]3! ... [ [Sigma]_[pi] = ([Sigma]_[pi])p = n ], that is, it is the coefficient of x^n in (h1x + h2x^2 + h3x^3 + ... )^m. The value of A_{(p1^[pi]1 p2^[pi]2 p3^[pi]3 ...), (1^m)} is the coefficient of (p1^[pi]1 p2^[pi]2 p3^[pi]3 ...)x^n in the development of the above expression, and is easily shown to have the value /p1 + m - 1\^[pi]1 /p2 + m - 1\^[pi]2 /p3 + m - 1\^[pi]3 \ p1 / \ p2 / \ p3 / ... - /m\ /p1 + m - 2\^[pi]1 /p2 + m - 2\^[pi]2 /p3 + m - 2\^[pi]3 \1/ \ p1 / \ p2 / \ p3 / ... - /m\ /p1 + m - 3\^[pi]1 /p2 + m - 3\^[pi]2 /p3 + m - 3\^[pi]3 \1/ \ p1 / \ p2 / \ p3 / ... - ... to m terms. Observe that when p1 = p2 = p3 = ... = [pi]1 = [pi]1 = [pi]1 ... = 1 this expression reduces to the mth divided differences of 0^n. The expression gives the compositions of the multipartite number ___________________
PREV.   NEXT  
|<   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57  
58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   >>   >|  



Top keywords:

parcels

 

objects

 

expression

 

function

 

distribution

 

number

 

distributions

 

theory

 

partition


coefficient
 
partitions
 
algebraic
 

desired

 
permutations
 

includes

 
reciprocity
 
reduces
 

divided


differences

 

multipartite

 

compositions

 

Observe

 
development
 
symbolized
 

symmetric

 

extensive

 

easily


extended

 

similarities

 

include

 

negative

 

Numbers

 

Multipartite

 

Compositions

 

Parcels

 

denoted


Functions

 
functions
 

general

 

theorems

 

Consider

 

product

 
symmetry
 

Symmetric

 

theorem


permuted