FREE BOOKS

Author's List




PREV.   NEXT  
|<   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70  
71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   >>   >|  
(m) | | (l + 2) (l + 3) (l + m + 1) | ------- . ------- ... ----------- | (2) (3) (m + 1) | . . ... . | . . ... . | . . ... . | (l + n) (l + n + 1) (l + m + n - 1) | ------- . ----------- ... --------------- | (n) (n + 1) (m + n - 1) y one factor appearing at each point of the lattice. In general, partition problems present themselves which depend upon the solution of a number of simultaneous relations in integers of the form [lambda]_1.[alpha]_1 + [lambda]_2.[alpha]_2 + [lambda]_3.[alpha]_3 + ... >= 0, the coefficients [lambda] being given positive or negative integers, and in some cases the generating function has been determined in a form which exhibits the fundamental solutions of the problems from which all other solutions are derivable by addition. (See MacMahon, _Phil. Trans._ vol. cxcii. (1899), pp. 351-401; and _Trans. Camb. Phil. Soc._ vol. xviii. (1899), pp. 12-34.) Method of symmetric functions. The number of distributions of n objects (p1p2p3 ...) into parcels (m) is the coefficient of b^m(p1p2p3 ...)x^n in the development of the fraction 1 ---------------------------------------------------------------------------- (1 - b[alpha]x. 1 - b[beta]x. 1 - b[gamma]x ... ) X (1 - b[alpha]^2x^2. 1 - b[alpha][beta]x^2. 1 - b[beta]^2x^2 ... ) X (1 - b[alpha]^3x^3. 1 - b[alpha]^2[beta]x^3. 1 - b[alpha][beta][gamma]x^3 ...) . . . . . . and if we write the expansion of that portion which involves products of the letters [alpha], [beta], [gamma], ... of degree r in the form 1 + h_r1.bx^r + h_r2.b^2x^2r + ..., we may write the development r=[oo] [Pi] (1 + h_r1.bx^r + h_r2.b^2x^2r + ...), r=1 and picking out the coefficient of b^m x^n we find [Sigma] h_[tau]1.h_[tau]2.h_[tau]3 ..., t1 t2 t3 where [Sigma][tau] = m, [Sigma][tau]t = n. The quantities h are symmetric functions of the quantities [alpha], [beta], [gamma], ... which in simple cases can be calculated without difficulty, and then the distribution function can be formed. _Ex. Gr._--Required the enumeration of the partitions of
PREV.   NEXT  
|<   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70  
71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   >>   >|  



Top keywords:

lambda

 

coefficient

 
function
 

solutions

 

number

 

problems

 

symmetric

 
functions
 

p1p2p3

 

development


quantities

 

integers

 

portion

 
involves
 
expansion
 

fraction

 

distribution

 
difficulty
 

calculated

 

formed


partitions
 

enumeration

 
Required
 

simple

 

degree

 

letters

 

picking

 

products

 

relations

 
simultaneous

solution

 

coefficients

 

negative

 
positive
 

depend

 
appearing
 
factor
 

partition

 

present

 
general

lattice

 
generating
 
parcels
 

objects

 

distributions

 

Method

 

MacMahon

 
fundamental
 
exhibits
 

determined