FREE BOOKS

Author's List




PREV.   NEXT  
|<   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63  
64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   >>   >|  
------------------- 1 - x^a. 1 - x^b. 1 - x^c. ... and the problems of finding the partitions of a number n, and of determining their number, are the same as those of solving and enumerating the solutions of the indeterminate equation in positive integers ax + by + cz + ... = n. Euler considered also the question of enumerating the solutions of the indeterminate simultaneous equation in positive integers ax + by + cz + ... = n a'x + b'y + c'z + ... = n' a"x + b"y + c"z + ... = n" which was called by him and those of his time the "Problem of the Virgins." The enumeration is given by the coefficient of x^n.y^n'.z^n" ... in the expansion of the fraction 1 ---------------------------------------------------------------------- (1 - x^a.y^b.z^c...)(1 - x^a'.y^b'.z^c'...)(1 - x^a".y^b".z^c"...) ... which enumerates the partitions of the multipartite number /nn'n"... into the parts /abc..., /a'b'c'..., /a"b"c"..., ... Sylvester has determined an analytical expression for the coefficient of x^n in the expansion of 1 ------------------------------ (1 - x^a)(1 - x^b)...(1 - x^i) To explain this we have two lemmas:-- _Lemma 1._--The coefficient of x^-1, i.e., after Cauchy, the residue in the ascending expansion of (1 - e^x)^-i, is -1. For when i is unity, it is obviously the case, and (1 - e^x)^-i-1 = (1 - e^x)^-i + e^x(1 - e^x)^-i-1 d 1 = (1 - e^x)^-i + -- (1 - e^x)^-i.--. dx i d 1 Here the residue of -- (1 - e^x)^-i.-- is zero, and therefore the residue dx i of (1 - e^x)^-i is unchanged when i is increased by unity, and is therefore always -1 for all values of i. _Lemma 2._--The constant term in any proper algebraical fraction developed in ascending powers of its variable is the same as the residue, with changed sign, of the sum of the fractions obtained by substituting in the given fraction, in lieu of the variable, its exponential multiplied in succession by each of its values (zero excepted, if there be such), which makes the given fraction infinite. For write the proper algebraical fraction c_{[lambda],[mu]} [gamma]_[lambda] F(x) = [Sigma][Sigma]-------------------- + [Sigma]---------
PREV.   NEXT  
|<   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63  
64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   >>   >|  



Top keywords:

fraction

 

residue

 
number
 

expansion

 

coefficient

 

variable

 

proper

 
ascending
 

values

 

enumerating


partitions

 

lambda

 

indeterminate

 
solutions
 
algebraical
 

integers

 

positive

 
equation
 

increased

 

unchanged


constant
 

succession

 
excepted
 

infinite

 

multiplied

 

changed

 

powers

 

fractions

 

exponential

 
substituting

obtained

 

developed

 

expression

 
called
 

Problem

 
enumerates
 
enumeration
 

Virgins

 

simultaneous

 
question

determining

 
finding
 
problems
 

solving

 

considered

 

multipartite

 

lemmas

 
Cauchy
 
explain
 

Sylvester