FREE BOOKS

Author's List




PREV.   NEXT  
|<   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66  
67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   >>   >|  
-------------------------------------- in ascending powers of 1 - a. 1 - ax. 1 - ax^2. 1 - ax^3...ad inf. a; for the coefficient of a^j.x^n in the expansion is the number of ways of composing n with j or fewer parts, and this we have seen in the coefficients of x^n in the ascending expansion of 1 ------------------------. 1 - x. 1 - x^2...1 - x^j Therefore 1 a a^2 --------------------------- = 1 + ----- + -------------- + ... 1 - a. 1 - ax. 1 - ax^2.... 1 - x 1 - x. 1 - x^2 a^j + ------------------------ + .... 1 - x. 1 - x^2...1 - x^j The coefficient of a^j.x^n in the expansion of 1 ------------------------------------- 1 - a. 1 - ax. 1 - ax^2. ... 1 - ax^i denotes the number of ways of composing n with j or fewer parts, none of which are greater than i. The expansion is known to be 1 - x^(j+1). 1 - x^(j+2). ... 1 - x^(j+i) [Sigma]-----------------------------------------a^j. 1 - x. 1 - x^2. ... 1 - x^i It has been established by the constructive method by F. Franklin (_Amer. Jour. of Math._ v. 254), and shows that the generating function for the partitions in question is 1 - x^(j+1). 1 - x^(j+2). ... 1 - x^(j+i) -----------------------------------------, 1 - x. 1 - x^2. ... 1 - x^i which, observe, is unaltered by interchange of i and j. Franklin has also similarly established the identity of Euler j=-[oo] (1 - x)(1 - x^2)(1 - x^3)...ad inf. = [Sigma](-)jx^{1/2(3j^2+j)}, j=+[oo] known as the "pentagonal number theorem," which on interpretation shows that the number of ways of partitioning n into an even number of unrepeated parts is equal to that into an uneven number, except when n has the pentagonal form 1/2(3j^2 + j), j positive or negative, when the difference between the numbers of the partitions is (-)^j. +----------+ |. . . .| . . . . . |. . . .| . . |. . . .| . |. . . .| +----------+ . . . . . . . . To illustrate an important dissection of the graph we will consider those graphs which read the same by columns as by lines; these are called self-conjugate. Such a graph may be o
PREV.   NEXT  
|<   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66  
67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   >>   >|  



Top keywords:

number

 

expansion

 
established
 

Franklin

 

pentagonal

 

partitions

 

composing

 
coefficient

ascending

 

positive

 

negative

 

difference

 

uneven

 
unrepeated
 
numbers
 

graphs


called

 
columns
 

conjugate

 

dissection

 
important
 

illustrate

 
partitioning
 

constructive


method

 

greater

 

powers

 

coefficients

 

denotes

 
Therefore
 

identity

 

similarly


theorem

 
interchange
 

unaltered

 
generating
 
function
 

observe

 

question

 
interpretation