FREE BOOKS

Author's List




PREV.   NEXT  
|<   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72  
73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   >>   >|  
---+-------+ +-------+-------+-------+-------+ | | [d]_x | | | | | 1 | | | +-------+-------+-------+-------+ +-------+-------+-------+-------+ | | | | [d]_x | | | | | 1 | +-------+-------+-------+-------+ +-------+-------+-------+-------+ | | | [d]_x | | | | | 1 | | +-------+-------+-------+-------+ +-------+-------+-------+-------+ | [d]_x | | | | | 1 | | | | +-------+-------+-------+-------+ +-------+-------+-------+-------+ ([d] = [delta]) the number in each row of cempartments denoting an operation of [delta]_x. Hence the permutation problem is equivalent to that of placing n units in the compartments of a square lattice of order n in such manner that each row and each column contains a single unit. Observe that the method not only enumerates, but also gives a process by which each solution is actually formed. The same problem is that of placing n rooks upon a chess-board of n^2 compartments, so that no rook can be captured by any other rook. Regarding these elementary remarks as introductory, we proceed to give some typical examples of the method. Take a lattice of m columns and n rows, and consider the problem of placing units in the compartments in such wise that the sth column shall contain [lambda]_s units (s = 1, 2, 3, ... m), and the tth row p1 units (t = l, 2, 3, ... n). Writing 1 + a1x + a2x^2 + ... + ... = (1 + a1x)(1 + a2x)(1 + a3x) ... 1 and D_p = --([d]_[a]1 + [a]1[d]_[a]2 + [a]2[d]_[a]3 + ...)^p, p! ([d] = [delta], [a] = [alpha]) the multiplication being symbolic, so that D_p is an operator of order p, the function is a_[lambda]1.a_[lambda]2.a_[lambda]3...a_[lambda]m, and the operator D_p1.D_p2.D_p3...D_pn. The number D_p1.D_p2...D_pn.a_[lambda]1.a_[lambda]2.a_[lambda]3...a_[lambda]m enumerates the solutions. For the mode of operation of D_p upon a product reference must be made to the section on "Differential Operators" in the article ALGEBRAIC FORMS. Writing a_[l]1.a_[l]2...a_[l]m = ... + [Delta][Sigma][a]1^p1.[a]2^p2...[a]n^pn + ..., or, in partition notation, (1^[l]1)(1^[l]2)...(1^[l]m) = ... + A(p1p2...pn) ... + D_p1.D_p2
PREV.   NEXT  
|<   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72  
73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   >>   >|  



Top keywords:

lambda

 

compartments

 
problem
 

placing

 

enumerates

 

Writing

 

lattice

 
operation
 

method


operator

 

number

 

column

 

symbolic

 
multiplication
 
ALGEBRAIC
 

article

 

notation

 
partition

Operators

 

Differential

 
solutions
 

product

 
reference
 

section

 

function

 

process

 

formed


solution

 

Observe

 
permutation
 

denoting

 

cempartments

 

equivalent

 
square
 

single

 
manner

proceed
 

introductory

 

typical

 
columns
 

examples

 
remarks
 
captured
 

elementary

 

Regarding