FREE BOOKS

Author's List




PREV.   NEXT  
|<   114   115   116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   131   132   133   134   135   136   137   138  
139   140   141   142   143   144   145   146   147   148   149   150   151   152   153   154   155   156   157   158   159   160   161   162   163   >>   >|  
on the pistons must be 17,278 lbs.; and the area of cylinders, and pressure of steam, must be such as to produce conjointly this total pressure. It thus becomes easy to tell the volume and pressure of steam required, which steam in its turn represents its equivalent of water which is to be evaporated from the boiler, and the boiler must be so proportioned, by the rules already given, as to evaporate this water freely. In the case of a steam vessel, the mode of procedure is the same, and when the resistance and speed are known, it is easy to tell the equivalent value of steam. STRENGTH OF BOILERS. 298. _Q._--What strain should the iron of boilers be subjected to in working? _A._--The iron of boilers, like the iron of machines or structures, is capable of withstanding a tensile strain of from 50,000 to 60,000 lbs. upon every square inch of section; but it will only bear a third of this strain without permanent derangement of structure, and it does not appear expedient in any boiler to let the strain exceed 4,000 lbs. upon the square inch of sectional area of metal, especially if it is liable to be weakened by corrosion. 299._Q._--Have any experiments been made to determine the strength of boilers? _A._--The question of the strength of boilers was investigated very elaborately a few years ago by a committee of the Franklin Institute, in America, and it was found that the tenacity of boiler plate increased with the temperature up to 550 deg., at which point the tenacity began to diminish. At 32 deg., the cohesive force of a square inch of section was 56,000 lbs.; at 570 deg., it was 66,500 lbs.; at 720 deg., 55,000 lbs.; at 1,050 deg., 32,000 lbs.; at 1,240 deg., 22,000 lbs.; and at 1,317 deg., 9,000 lbs. Copper follows a different law, and appears to be diminished in strength by every addition to the temperature. At 32 deg. the cohesion of copper was found to be 32,800 lbs. per square inch of section, which exceeds the cohesive force at any higher temperature, and the square of the diminution of strength seems to keep pace with the cube of the increased temperature. Strips of iron cut in the direction of the fibre were found to be about 6 per cent. stronger than when cut across the grain. Repeated piling and welding was found to increase the tenacity of the iron, but the result of welding together different kinds of iron was not found to be favorable. The accidental overheating of a boiler was found to reduce
PREV.   NEXT  
|<   114   115   116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   131   132   133   134   135   136   137   138  
139   140   141   142   143   144   145   146   147   148   149   150   151   152   153   154   155   156   157   158   159   160   161   162   163   >>   >|  



Top keywords:

boiler

 

square

 
strength
 

strain

 

temperature

 
boilers
 

section

 

tenacity

 

pressure

 

increased


welding

 

cohesive

 
equivalent
 

Copper

 
Franklin
 
Institute
 
America
 

diminish

 

produce

 

conjointly


cylinders

 

diminished

 
Repeated
 

piling

 

stronger

 

increase

 
accidental
 

overheating

 

reduce

 

favorable


result

 

exceeds

 

higher

 

copper

 

committee

 

addition

 

cohesion

 
diminution
 

pistons

 

direction


Strips

 

appears

 
machines
 
proportioned
 

subjected

 

working

 

structures

 
capable
 

evaporated

 

represents